

Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

| NRCB USE ONLY                                                                                                                                                         | Application number                      | Legal I           | and description      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------|----------------------|
| X Approval Registration Authorization                                                                                                                                 | LA24002                                 | SE 21             | -9-26 W4M            |
| Amendment                                                                                                                                                             |                                         |                   |                      |
| PPLICATION DISCLOSURE                                                                                                                                                 |                                         |                   |                      |
| is information is collected under the authority of the ovisions of the <i>Freedom of Information and Protect</i> litten request that certain sections remain private. |                                         |                   |                      |
| ny construction prior to obtaining an NRCB per osecution.                                                                                                             | rmit is an offence and is subject t     | o enforcement     | action, including    |
| the applicant, or applicant's agent, have read and covided in this application is true to the best of my k                                                            |                                         | nd I acknowledge  | that the information |
| Nov 29, 2023                                                                                                                                                          |                                         |                   |                      |
| lan Hurrahy Forms                                                                                                                                                     | Signature                               | Up to             | utanhos              |
| orporate name (if applicable)                                                                                                                                         | Print name                              |                   | 4                    |
| ENERAL INFORMATION REQUIREMENTS                                                                                                                                       |                                         |                   |                      |
| ENERAL INFORMATION REQUIREMENTS  Proposed facilities: list all proposed confined feed                                                                                 | ling operation facilities and their dim | ensions. Indicate | whether any of the   |
| proposed facilities are additions to existing facilities                                                                                                              |                                         | S                 |                      |
| Proposed facilities                                                                                                                                                   |                                         |                   | imensions (m)        |
|                                                                                                                                                                       |                                         | (length           | n, width, and depth) |
| EAST PENS (18)                                                                                                                                                        |                                         | 153.4             | m x 36.9 m           |
| WEST PENS (24)                                                                                                                                                        |                                         | 160,3             | n × 36.9 m           |
| HORTH PENS (5)                                                                                                                                                        |                                         | 160.3m            | 1 × 36.8 m Cap       |
| NORTH CATAL BASIN                                                                                                                                                     |                                         | 130 MX            | 40 m x 2 m           |
| SOUTH CATCH BASIN                                                                                                                                                     |                                         | 106m x            | 36.6m x 2m           |
| Existing facilities: list ALL existing confined feeding                                                                                                               | ng operation facilities and their dime  | nsions            |                      |
| Existing facilities                                                                                                                                                   | Dimensio<br>(length, width              | ` '               | NRCB USE ONLY        |
| HORIE ROW (3 pers)                                                                                                                                                    | 92000                                   | 36 m              |                      |
| Model 20-15 (& pros)                                                                                                                                                  | 212 h                                   | <del>42</del>     |                      |
| 500 THE RIVER (5 1002)                                                                                                                                                | 242                                     | 2)                |                      |
| NRCB USE ONLY                                                                                                                                                         | uniform.                                | <i>)</i> ,        |                      |
|                                                                                                                                                                       |                                         |                   |                      |
| See next page for existing facilities.                                                                                                                                | 1.045045                                |                   | NE 4.4               |
| CFO currently permitted under NRCB issued                                                                                                                             | u Approval LA15U45 and Autho            | orization LA1/C   | J34A.                |
|                                                                                                                                                                       |                                         |                   |                      |
|                                                                                                                                                                       |                                         |                   |                      |

#### **Existing Facilities**

- 1 Feedlot pens row B (237.7 m x 38.1m)
- 2 Catch basin (51.8 m x 36.6 m x 2.0 m)
- 3 Feedlot pens row A (298.7 m x 38.1m)
  - Barn I (41.5 m x 14.0 m)
  - Barn II (48.8 m x 14.6 m)
- 4 Barn III (75.6 m x 24.2 m)
- 5 Feedlot pens (305.0 m x 45.1 m) (39 m x 14.5 m, as per LA15037. Clerical error in LA15045 listed wrong
- 6 Pole calf barn (39.0 m x 45.1 m) dimensions)
- 7 Calf barn (210' x 140') with 18" pit (deep) (77.8 m x 38.2 m x 0.5 m deep)
- 8 -Transfer pit 9210' long x 8' wide x 8' deep) (77.8 m x 2.4 m x 2.4 m deep)

- Menure pot (= x (6 x 5 x 3 m)

Note: Manure pit being re-purposed and no longer being used as a manure collection area.

Note: Barn 1 and 2 have been replaced by calf barn



Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

| If a new facility is replacing an old facility, please                                                   | e explain what will hap | pen to the old facility and v                           | when. 🗹 N/A     |
|----------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-----------------|
| Upon operoud of new for existing facilities will be phase. (Highlighted area)                            | cility. the fo          | or north sections sed. Please se                        | e attached      |
| photo. (Highlighted onea)                                                                                | . Photo #               | avoarded.                                               |                 |
| The existing catch basin                                                                                 | will be                 | 27.000                                                  |                 |
| Construction completion date for proposed facilit Additional information                                 | ies July, 20            | 7.50                                                    |                 |
| Livestock numbers: Complete only if livestock numblivestock numbers increase in your Part 2 application, |                         |                                                         |                 |
| Livestock category and type (Available in the Schedule 2 of the Part 2 Matters Regulation)               | Permitted number        | Proposed increase or decrease in number (if applicable) | Total           |
| See Part 1                                                                                               |                         |                                                         |                 |
| AO Comment: applicant proposing to increase beef feeder calves by 14,000                                 |                         | 1                                                       | O. Proposing to |
|                                                                                                          |                         | -                                                       |                 |
|                                                                                                          |                         |                                                         |                 |
|                                                                                                          |                         |                                                         |                 |
|                                                                                                          |                         |                                                         |                 |
|                                                                                                          |                         |                                                         |                 |



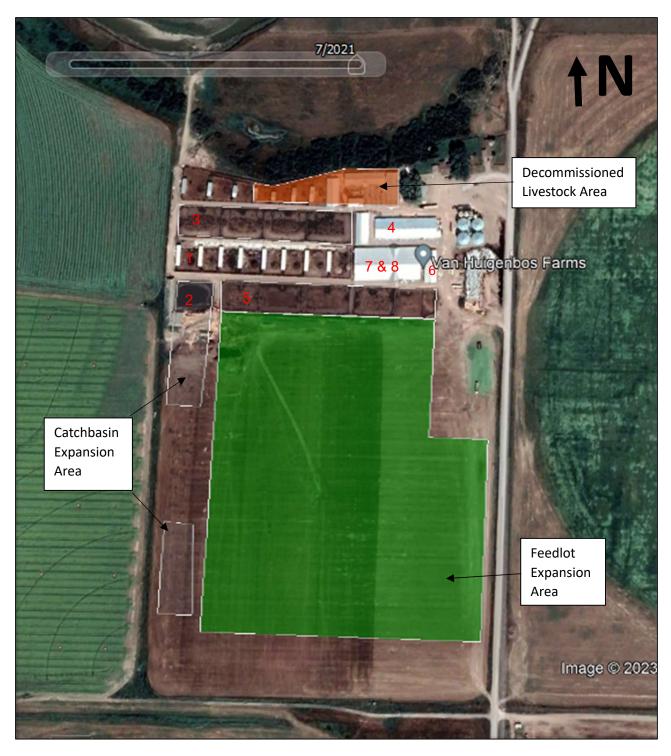



Figure 1 – Van Huigenbos Farms – Proposed Feedlot Expansion Map



Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

#### DECLARATION AND ACKNOWLEDGMENT OF APPLICANT CONCERNING WATER ACT LICENCE

issued by Alberta Environment and Protected Areas (EPA) for a confined feeding operation (CFO)

Date and sign one of the following four options

| OPTION 1: Applying through the N                                                         | RCB for both the AOPA permit and the Water Act licence                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                          | ation coupled to my AOPA permit application.                                                                                                                                                                                                     |
| Signed thisday of                                                                        | _, 20 Signature of Applicant or Agent                                                                                                                                                                                                            |
| OPTION 2: Processing the AOPA pe                                                         | ermit and Water Act licence separately                                                                                                                                                                                                           |
| I (we) acknowledge that the CFO v     development or activity proposed i                 | will need a new water licence from EPA under the Water Act for the                                                                                                                                                                               |
|                                                                                          | ess the AOPA application independently of EPA's processing of the                                                                                                                                                                                |
| 3. In making this request, I (we) reco                                                   | ognize that, if this AOPA application is granted by the NRCB, the ered by EPA as improving or enhancing the CFO's eligibility for a                                                                                                              |
|                                                                                          | ruction or actions to populate the CFO with livestock pursuant to an later Act licence will <b>not</b> be relevant to EPA's consideration of ence application.                                                                                   |
| the Water Act licence application is violation of the Water Act. This ris                | construction or livestock populating will be at the CFO's sole risk if s denied or if the operation of the CFO is otherwise deemed to be in k includes being required to depopulate the CFO and/or to cease                                      |
| <ol><li>AS RELEVANT: I (we) acknowledge<br/>and that, pursuant to the Bow, Old</li></ol> | "works" or "undertakings" (as defined in the Water Act).  ge that the CFO is located in the South Saskatchewan River Basin  Iman and South Saskatchewan River Basin Water Allocation Order  s currently closed to new surface water allocations. |
| <ol> <li>Provide: Water licence application</li> </ol>                                   |                                                                                                                                                                                                                                                  |
| Signed this ZZ day of Noverlar                                                           | , 20_ <u></u>                                                                                                                                                                                                                                    |
|                                                                                          | Signature of Applicant or Agent                                                                                                                                                                                                                  |
|                                                                                          |                                                                                                                                                                                                                                                  |
| OPTION 3: Additional water licence                                                       | not required                                                                                                                                                                                                                                     |
|                                                                                          | t need a new licence from EPA under the Water Act for the                                                                                                                                                                                        |
| development or activity proposed in 2 <b>Provide</b> : Water license number(s)           | n this AOPA application. or water conveyance agreement details                                                                                                                                                                                   |
|                                                                                          | or water conveyance agreement details                                                                                                                                                                                                            |
| Signed this day of                                                                       | 20                                                                                                                                                                                                                                               |
|                                                                                          | Signature of Applicant or Agent                                                                                                                                                                                                                  |

Name Address Henry Van Huigenbos Legal Land Location

MDS Spreadsheet based on 2006 AOPA Regulations

| Category   | Type of Livestock                    | Factor A  | Technology | MU    | LSU     |   | Number of | LSU    |
|------------|--------------------------------------|-----------|------------|-------|---------|---|-----------|--------|
| of         | 1,700 01 2170010010                  | 1 4010171 | Factor     | 0     | Factor  |   | Animals   | 200    |
| Livestock  |                                      |           | I actor    |       | i actor |   | Allillais |        |
|            |                                      |           |            |       |         |   |           |        |
| Feedlot    | Beef Cows/Finishers (900+ lbs)       | 0.700     | 0.700      | 0.910 | 0.4459  |   |           | -      |
| Animals    | Beef Feeders (450 - 900 lbs)         | 0.700     | 0.700      | 0.500 | 0.2450  |   |           | -      |
|            | Beef Feeder Calves (<550 lbs)        | 0.700     | 0.700      | 0.275 | 0.1348  |   | 16.500    | 2,223. |
|            | Horses - PMU                         | 0.650     | 0.700      | 1.000 | 0.4550  |   |           | -      |
|            | Horses - Feeders > 750 lbs           | 0.650     | 0.700      | 1.000 | 0.4550  |   |           | _      |
|            | Horses - Foals < 750 lbs             | 0.650     | 0.700      | 0.300 | 0.1365  |   |           |        |
|            | Mules                                | 0.600     | 0.700      | 1.000 | 0.1303  | Н |           |        |
|            |                                      |           |            |       |         | Н |           |        |
|            | Donkeys                              | 0.600     |            | 0.670 | 0.2814  |   | -         |        |
|            | Bison                                | 0.600     | 0.700      | 1.000 | 0.4200  |   |           |        |
|            | Other                                |           |            |       |         |   |           | -      |
| Dairy      | Free Stall – Lactating Cows with all | 0.800     | 1.100      | 2.000 | 1.7600  |   |           | -      |
|            | associated dries, heifers, and       |           |            |       |         |   |           |        |
| (*count    | calves*                              |           |            |       |         |   |           |        |
| actating   | Free Stall – Lactating Cows with Dry | 0.800     | 1.100      | 1.640 | 1.4432  |   |           | -      |
| cows only) | Cows only*                           |           |            |       | -       |   |           |        |
| ,,         | Free Stall - Lactating Cows only     | 0.800     | 1.100      | 1.400 | 1.2320  |   |           |        |
|            | Tie Stall – Lactating Cows only      | 0.800     | 1.000      | 1.400 | 1.1200  |   |           |        |
|            | Loose Housing – Lactating Cows       | 0.800     |            | 1.400 | 1.1200  | Н |           |        |
|            | only                                 | 0.600     | 1.000      | 1.400 | 1.1200  |   |           | -      |
|            | Dry Cow                              | 0.000     | 0.700      | 4.000 | 0.5000  | Н |           |        |
|            | Dry Cow                              | 0.800     | 0.700      | 1.000 | 0.5600  |   |           |        |
|            |                                      |           |            |       |         |   |           |        |
|            | Replacements – Bred Heifers          | 0.800     | 0.700      | 0.875 | 0.4900  |   |           | -      |
|            | (Breeding to Calving)                |           |            |       |         |   |           |        |
|            | Replacements - Growing Heifers       | 0.800     | 0.700      | 0.525 | 0.2940  |   |           | -      |
|            | (350 lbs to breeding)                |           |            |       |         |   |           |        |
|            | Calves (< 350 lbs)                   | 0.800     | 0.700      | 0.200 | 0.1120  |   |           | -      |
|            | Other                                |           |            |       |         |   |           | _      |
| Swine      | Farrow to finish *                   | 2.000     | 1.100      | 1.780 | 3.9160  |   |           |        |
| Liquid     | Farrow to wean *                     | 2.000     |            | 0.670 | 1.4740  |   |           | -      |
| (*count    | Farrow only *                        | 2.000     |            | 0.530 | 1.1660  | + |           |        |
|            |                                      |           |            |       |         | - |           |        |
| sows only) | Feeders/Boars                        | 2.000     |            | 0.200 | 0.4400  |   |           | -      |
|            | Growers/Roasters                     | 2.000     | 1.100      | 0.118 | 0.2600  | Н |           | -      |
|            | Weaners                              | 2.000     | 1.100      | 0.055 | 0.1210  | ш |           | -      |
|            | Other                                |           |            |       |         |   |           |        |
| Swine      | Farrow to finish *                   | 2.000     | 0.800      | 1.780 | 2.8480  |   |           | -      |
| Solid      | Farrow to wean *                     | 2.000     | 0.800      | 0.670 | 1.0720  |   |           | -      |
| (*Count    | Farrow only *                        | 2.000     | 0.800      | 0.530 | 0.8480  |   |           | -      |
| sows only) | Feeders/Boars                        | 2.000     | 0.800      | 0.200 | 0.3200  |   |           | _      |
| ,,         | Growers/Roasters                     | 2.000     | 0.800      | 0.118 | 0.1888  |   |           |        |
|            | Weaners                              | 2.000     |            | 0.055 | 0.0880  |   |           |        |
|            | Other                                | 2.000     | 0.800      | 0.055 | 0.0000  | Н |           |        |
| Davillani. | Chiefen Deceden Celid                | 4.000     | 0.700      | 0.040 | 0.0070  | - |           | -      |
| Poultry    | Chicken - Breeders - Solid           | 1.000     |            | 0.010 | 0.0070  | Н |           | -      |
|            | Chicken - Layers - Liquid (includes  | 2.000     | 1.100      | 0.008 | 0.0176  |   |           | -      |
|            | associated pullets)                  |           |            |       |         | ш |           |        |
|            | Chicken - Layers - (Belt Cage)       | 2.000     | 0.700      | 0.008 | 0.0112  |   |           | -      |
|            | Chicken - Layers - (Deep Pit)        | 2.000     | 0.700      | 0.008 | 0.0112  |   |           | -      |
|            | Chicken - Pullets/Broilers           | 1.000     | 0.700      | 0.002 | 0.0014  |   |           | -      |
|            | Turkey - Toms/Breeders               | 1.000     | 0.700      | 0.020 | 0.0140  |   |           | -      |
|            | Turkey - Hens (light)                | 1.000     | 0.700      | 0.013 | 0.0091  |   |           | -      |
|            | Turkey - Broilers                    | 1.000     |            | 0.010 | 0.0070  | П |           | -      |
|            | Ducks                                | 1.000     | 0.700      | 0.010 | 0.0070  | H |           |        |
|            | Geese                                | 1.000     |            | 0.010 | 0.0070  |   |           |        |
|            | Other                                | 1.000     | 0.700      | 0.020 | 0.0140  | Н |           |        |
| Choor 1    | 32131                                | 0.000     | 0.700      | 0.000 | 0.0040  | Н |           |        |
| Sheep and  | Sheep - Ewes/Rams                    | 0.600     |            | 0.200 | 0.0840  | Н |           | -      |
| Goats      | Sheep - Ewes with lambs              | 0.600     |            | 0.250 | 0.1050  | Ц |           | -      |
|            | Sheep - Lambs                        | 0.600     |            | 0.050 | 0.0210  | Ц |           | -      |
|            | Sheep - Feeders                      | 0.600     |            | 0.100 | 0.0420  | Ш |           | -      |
|            | Goats - Meat/Milk (per Ewe)          | 0.700     |            | 0.170 | 0.0833  |   |           | -      |
|            | Goats - Nannies/Billies              | 0.700     |            | 0.140 | 0.0686  |   |           | -      |
|            | Goats - Feeders                      | 0.700     | 0.700      | 0.077 | 0.0377  |   |           |        |
|            | Other                                | 0.700     | 0.700      | 0.011 | 0.0011  | Н |           |        |
| Consid     | Elk                                  | 0.600     | 0.700      | 0.600 | 0.2520  | Н |           |        |
| Cervid     |                                      | 0.600     |            | 0.600 | 0.2520  | Н |           |        |
|            | Deer                                 | 0.600     | 0.700      | 0.200 | 0.0840  | Н |           | -      |
|            | Other                                |           |            |       |         | Ц |           |        |
| Wild Boar  | Feeders                              | 2.000     | 0.800      | 0.140 | 0.2240  | Ц | -         | -      |
| Wild Doal  |                                      |           |            |       |         |   |           |        |
| Wild Boal  | Sow (farrowing)                      | 2.000     | 0.800      | 0.371 | 0.5936  |   |           | -      |

#### 2,223.4 Total

## For New Operations Dispersion Factor

Distance Odour Objective 41.04 54.72 68.4 109.44 Feet Metres
2,243 684
2,991 912
3,739 1,140
5,982 1,823 Category

# For Expanding Operations Dispersion Factor Expansion Factor

1 0.77

|          |                 | Dista | ance   |
|----------|-----------------|-------|--------|
| Category | Odour Objective | Feet  | Metres |
| 1        | 41.04           | 1,727 | 526    |
| 2        | 54.72           | 2,303 | 702    |
| 3        | 68.40           | 2,879 | 877    |
| 4        | 109.44          | 4,606 | 1,404  |



Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

### DISTANCE OF ANY MANURE STORAGE FACILITY (EXISTING OR PROPOSED) TO NEIGHBOURING RESIDENCES

|                   |                        |              |                             |                          | NRCB USE ON     | LY                                  |                      |
|-------------------|------------------------|--------------|-----------------------------|--------------------------|-----------------|-------------------------------------|----------------------|
| Neighbour name(s) | Legal land description | Distance (m) | Zoning<br>(LUB)<br>category | MDS<br>category<br>(1-4) | Distance<br>(m) | Waiver<br>attached<br>(if required) | Meets<br>regulations |
| Bruce tostelasky  | NE 21-9-26W4M          | 530          |                             |                          |                 |                                     |                      |
| Lloyd Gurderson   | NW 22-9-26W4M          | 800          |                             |                          |                 |                                     |                      |
| Josh Van Herk     | SE 16-9-26W4M          | 1046         |                             |                          |                 |                                     |                      |
| Ica Weggeman      | NW 16-9-26W4M          | 707          |                             |                          |                 |                                     |                      |
|                   |                        |              |                             |                          |                 |                                     |                      |

LAND BASE FOR MANURE AND COMPOST APPLICATION (complete only if an increase in livestock or manure production will occur)

|                        |                                         |                       |               | NRCB US             | SE ONLY                          |
|------------------------|-----------------------------------------|-----------------------|---------------|---------------------|----------------------------------|
| Name of land owner(s)* | Legal land description                  | Usable area**<br>(ha) | Soil zone *** | Usable area<br>(ha) | Agreement attached (if required) |
| Triple VH Farms        | See LLD below                           | 440 acres             | (rrigated     |                     | - Constant                       |
| Nico & Korie De Wit    | See attached manure spreading agreement | 260 acros             | Imigated      |                     |                                  |
|                        | 1 5 5                                   |                       | J             |                     |                                  |
|                        |                                         |                       |               |                     |                                  |
|                        |                                         |                       |               |                     |                                  |
|                        |                                         |                       | Total         |                     |                                  |

<sup>\*</sup> If you are **not** the registered landowner, you must attach copies of land use agreements signed by all landowners.

\*\*\* Brown, dark brown, black, grey wooded, or irrigated

Additional information (attach any additional information as required)

<sup>\*\*</sup> Available manure spreading area (excluding setback areas from residences, common bodies of water, water wells, etc. as identified in Agdex 096-5 Manure Spreading Regulations)

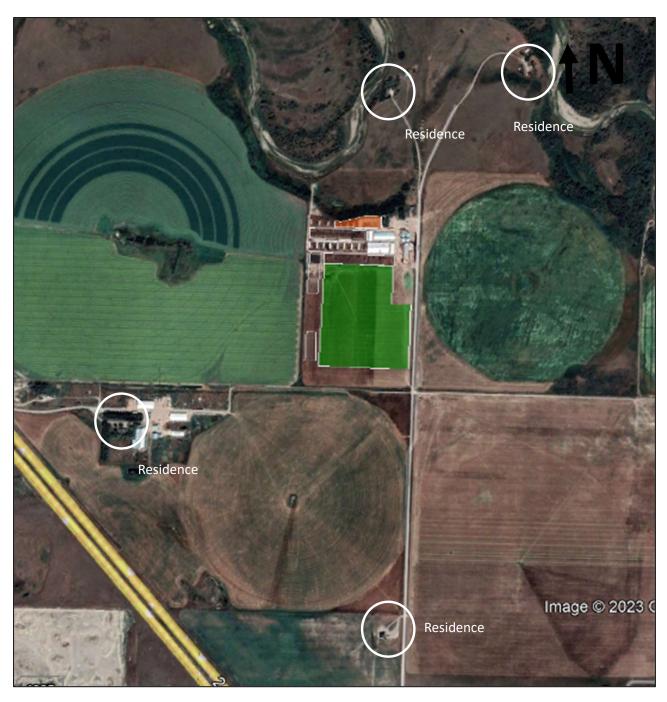



Figure 2 – Van Huigenbos Farms – Site Map

Landhase Requirements (hectares) based on 2006 AOPA requirements

0

| Category of                      | Requirements (hectares) base Type of Livestock                                               | Number of                                            | Dark Brown        | Grey   | Black             | Irrigated         |
|----------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------|--------|-------------------|-------------------|
| Livestock                        |                                                                                              | Animals                                              | & Brown           | Wooded | (ha)              | (ha)              |
|                                  |                                                                                              |                                                      | (ha)              | (ha)   | , ,               | , ,               |
| eedlot                           | Cows/Finishers (900+ lbs)                                                                    | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
| nimals                           | Feeders (450 - 900 lbs)                                                                      | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Feeder Calves (<550 lbs)                                                                     | 16500.0                                              | 511.5             | 429.0  | 313.5             | 247.5             |
|                                  | Horses - PMU                                                                                 | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Horses - Feeders > 750 lbs                                                                   | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Horses - Foals < 750 lbs                                                                     | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Mules                                                                                        | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Donkeys                                                                                      | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Bison                                                                                        | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Other                                                                                        | 0.0                                                  |                   |        |                   |                   |
| Dairy                            | Free Stall – Lactating Cows with all associated dries, heifers, and calves*                  | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
| *count<br>actating<br>cows only) | Free Stall – Lactating Cows with Dry Cows only *                                             | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
| ovio only)                       | Free Stall – Lactating Cows only*                                                            | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Tie Stall – Lactating Cows only                                                              | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Loose Housing – Lactating Cows only                                                          | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Dry Cow (Solid manure)                                                                       | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Dry Cow (Liquid manure)                                                                      | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Replacements – Bred Heifers                                                                  | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | (Breeding to Calving) Replacements - Growing Heifers                                         | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | (350 lbs to breeding)<br>Calves (< 350 lbs)                                                  | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Other                                                                                        | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
| Swine                            | Farrow to finish *                                                                           | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
| iquid                            | Farrow to wean *                                                                             | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
| *count                           | Farrow only *                                                                                | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
| ows only)                        | Feeders/Boars                                                                                | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
| ,,                               | Growers/Roasters                                                                             | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Weaners                                                                                      | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Other                                                                                        | 0.0                                                  |                   |        |                   |                   |
| Swine                            | Farrow to finish *                                                                           | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
| Solid                            | Farrow to wean *                                                                             | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
| *Count                           | Farrow only *                                                                                | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
| sows only)                       | Feeders/Boars                                                                                | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Growers/Roasters                                                                             | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Weaners                                                                                      | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
| )                                | Chieles Deceders Calid                                                                       | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.1               |
| Poultry                          | Chicken - Breeders - Solid                                                                   | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Chicken - Layers - Liquid (includes<br>associated pullets)<br>Chicken - Layers - (Belt Cage) | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Chicken - Layers - (Deep Pit)                                                                | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Chicken - Pullets/Broilers                                                                   | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Turkey - Toms/Breeders                                                                       | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Turkey - Hens (light)                                                                        | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.0               |
|                                  | Turkey - Broilers                                                                            | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Ducks                                                                                        | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Geese<br>Other                                                                               | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
| Goats and                        | Sheep - Ewes/Rams                                                                            | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
| Sheep                            | Sheep - Ewes with lambs                                                                      | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Sheep - Lambs                                                                                | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Sheep - Feeders                                                                              | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  |                                                                                              | 0.0                                                  | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Goats - Meat/Milk (per Ewe)                                                                  |                                                      |                   | 0.0    | 0.0               | 0.                |
|                                  | Goats - Nannies/Billies                                                                      | 0.0                                                  | 0.0               |        | 0.0               |                   |
|                                  | Goats - Nannies/Billies<br>Goats - Feeders                                                   | 0.0                                                  | 0.0               | 0.0    | 0.0               |                   |
| `envid                           | Goats - Nannies/Billies<br>Goats - Feeders<br>Other                                          | 0.0<br>0.0<br>0.0                                    | 0.0               | 0.0    | 0.0               | 0.                |
| Cervid                           | Goats - Nannies/Billies Goats - Feeders Other Elk                                            | 0.0<br>0.0<br>0.0<br>0.0                             | 0.0               | 0.0    | 0.0               | 0.                |
| Cervid                           | Goats - Nannies/Billies Goats - Feeders  State Elk Deer                                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | 0.0               | 0.0    | 0.0               | 0.                |
|                                  | Goats - Nannies/Billies Goats - Feeders  Elle Deer  Elik                                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 0.0               | 0.0    | 0.0               | 0.<br>0.<br>0.    |
|                                  | Goats - Nannies/Billies Goats - Feeders Johner Elk Deer Jiher Feeders                        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0 | 0.0    | 0.0<br>0.0<br>0.0 | 0.<br>0.<br>0.    |
| Cervid<br>Wild Boar              | Goats - Nannies/Billies Goats - Feeders  Elle Deer  Elik                                     | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 0.0               | 0.0    | 0.0               | 0.0<br>0.0<br>0.0 |
|                                  | Goats - Nannies/Billies Goats - Feeders  Wher  Elk Deer  Blue Feeders Sow (farrowing)        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>0.0 | 0.0    | 0.0<br>0.0<br>0.0 | 0.<br>0.<br>0.    |

Vico De Wit , manure receiver

| Length of agreement: This                                                              | agreement is valid for | r a time period of $5$                           | <u>years</u>                 |
|----------------------------------------------------------------------------------------|------------------------|--------------------------------------------------|------------------------------|
| Legal Land Location Soil SE 15-9-2764 WE 15-9-2764                                     |                        | Acres suitable for manure spreading <sup>2</sup> |                              |
|                                                                                        |                        |                                                  |                              |
| <sup>1</sup> Soil type choices: Dark brow<br><sup>2</sup> Land within required setback |                        |                                                  | etc is not included          |
| Other Comments:  Manure Producer (Confined                                             | Feeding Operation) Le  | gal Land Location:                               | SE-21-00-26 W4               |
| Dec H, 203  Date (dd/mm/yyyy) Sign                                                     | gature                 | Hony Von Hung<br>Print Name                      | <u>SE-21-09-26</u> W4 jerbos |
| Manure Receiver - Landown                                                              | er(s) <sup>3</sup>     |                                                  |                              |
| Dec./3 2023 Date (dd/mm/yyyy) Sign                                                     | nature                 | Print Name                                       | it                           |
| Date (dd/mm/yyyy) Sign                                                                 | nature I               | Print Name                                       |                              |

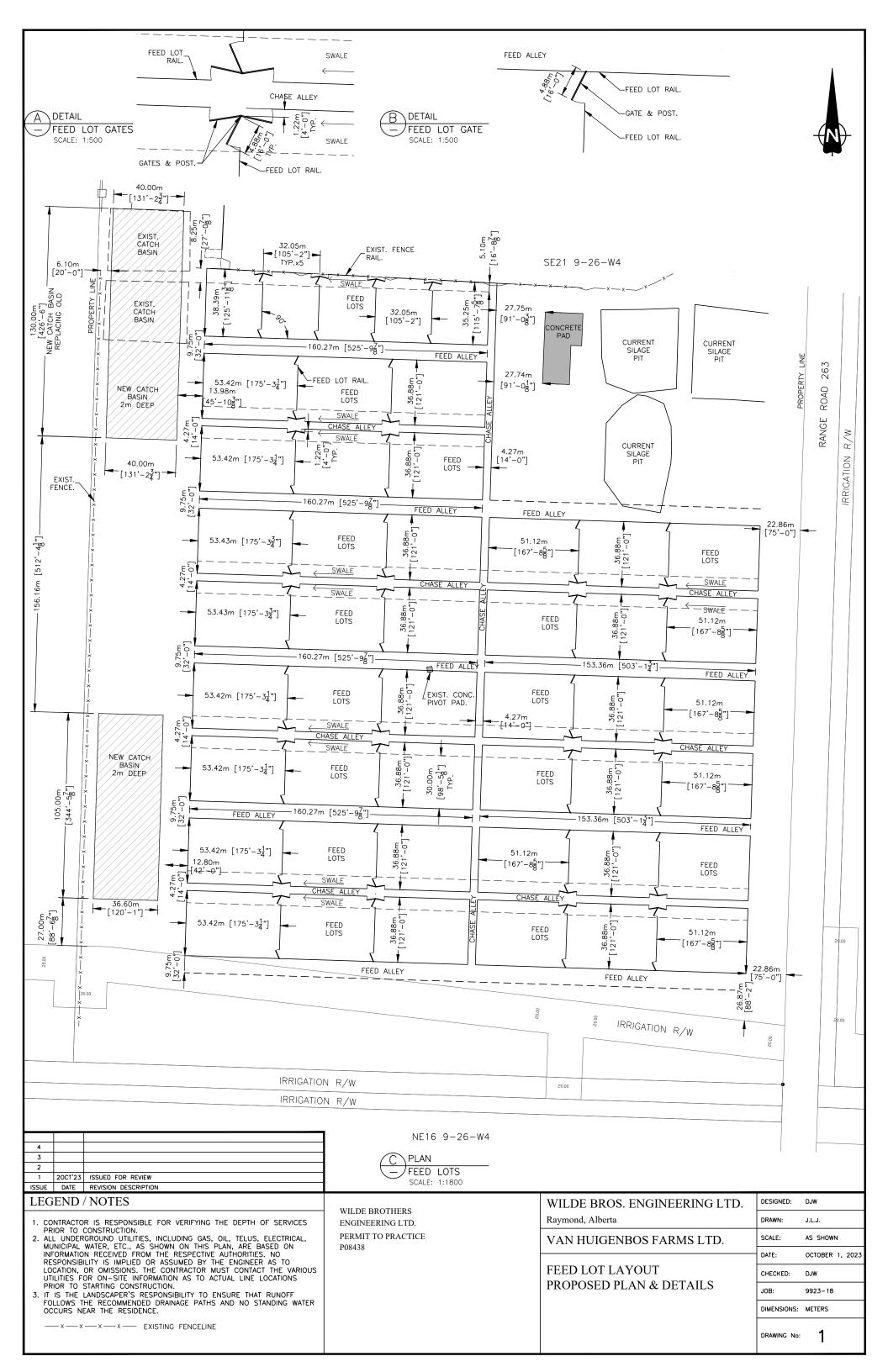
<sup>&</sup>lt;sup>3</sup> All registered owners of land, or authorized signing authorities must sign



Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area, and/or manure storage facility(ies)

| GENERAL | ENVIR | ONMENTAL | INFORM | ATTON |
|---------|-------|----------|--------|-------|
|---------|-------|----------|--------|-------|

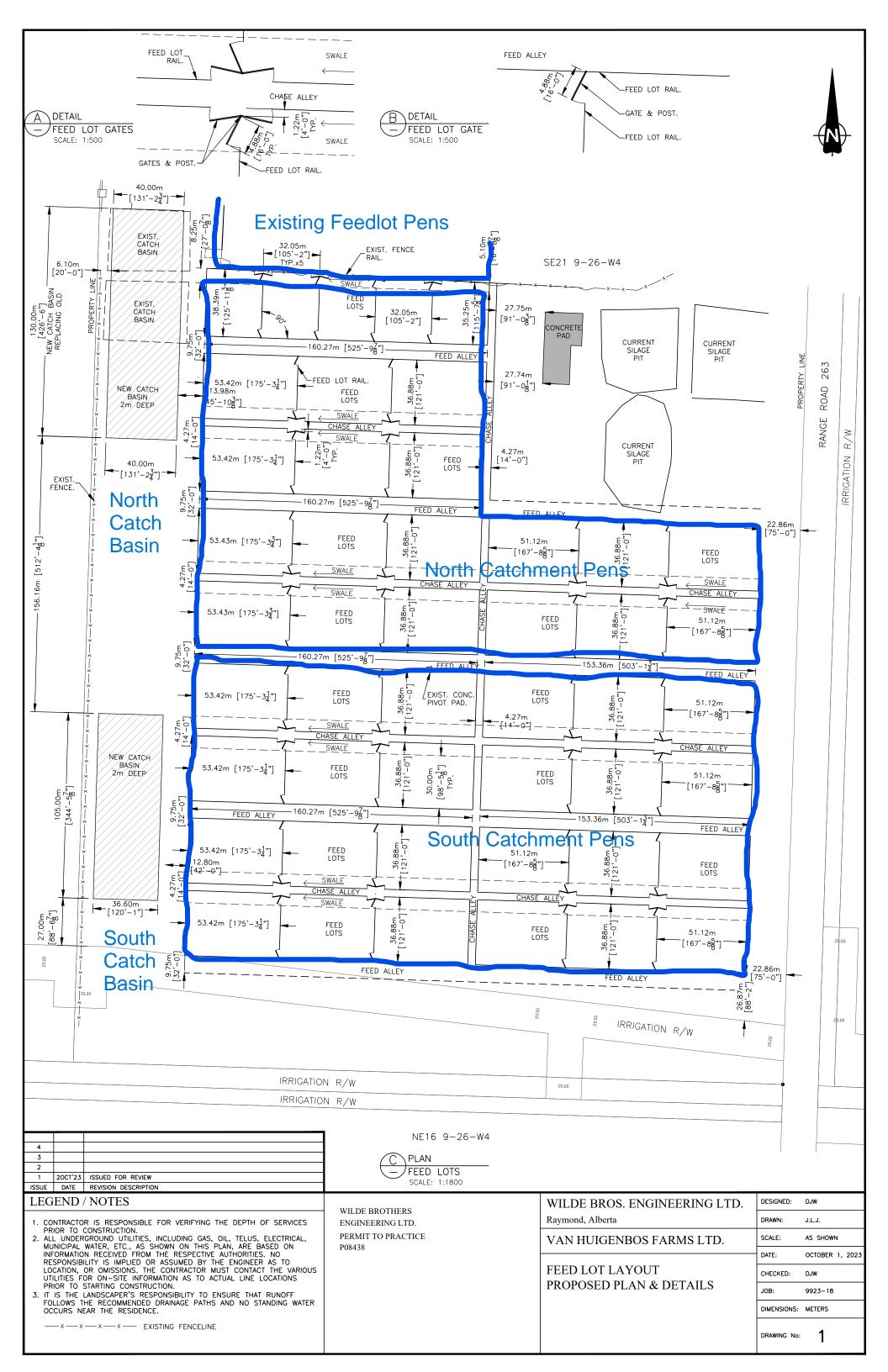
(complete this section for the worst case of the existing facility which is the closest to water bodies or water wells and for each of the proposed facilities) Facility description / pame (as indicated on site plan)


| xisting<br>ropose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d 2: Live floor Co                                                                                                                                                   |          |                 | -               | d 1:               | edlot Expensi                   |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-----------------|--------------------|---------------------------------|------------|
| Facili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ty and environmental risk                                                                                                                                            |          | Faci            | lities          |                    | NRC                             | B USE ONLY |
| 200 (A. 100 (A | information                                                                                                                                                          | Existing | Proposed 1      | Proposed 2      | Proposed 3         | Meets<br>requirements           | Comments   |
| Flood plain<br>information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | What is the elevation of the floor of<br>the lowest manure storage or<br>collection facility above the 1:25<br>year flood plain or the highest<br>known flood level? | >1 m     | >1 m<br>□ ≤ 1 m | >1 m<br>□ ≤ 1 m | ☐ > 1 m<br>☐ ≤ 1 m | YES NO YES with exemption       |            |
| rer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | How many springs are within 100 m of the manure storage facility or manure collection area?                                                                          | 0        | 0               | 0               |                    | ☐ YES ☐ NO ☐ YES with exemption |            |
| Surface water<br>information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | How many water wells are within 100 m of the manure storage facility or manure collection area?                                                                      | ĺ        | 0               | 0               |                    | ☐ YES ☐ NO ☐ YES with exemption |            |
| л .=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | What is the shortest distance from<br>the manure collection or storage<br>facility to a surface water body?<br>(e.g., lake, creek, slough, seasonal)                 | 150 m    | 330 m           | 280 m           |                    | YES NO YES with exemption       |            |
| Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | What is the depth to the water table?                                                                                                                                |          | 73 m            | 73 M            |                    | YES NO YES with exemption       |            |
| inforn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | What is the depth to the groundwater resource/aquifer you draw water from?                                                                                           | 73m      | >3m             | 73m             |                    | YES NO                          |            |

Additional information (attach supporting information, e.g. borehole logs, records, etc. you consider relevant to your application)

See attached soils report - AMEC (Dec 21, 2015)




Figure 3 – Van Huigenbos Farms – Area Map – Proposed Feedlot Expansion





Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area and/or manure storage facility(ies)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | piete a copy of this secti<br>urally occurring protecti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ion for <b>EACH</b> barn, feedlot, and<br>ive layer for the liner)                   | storage in                         | actively for Sona fine                                                                                    | ,                                                   |              |                             |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------|-----------------------------|------------------------|
| acili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | itv description / nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e (as indicated on site plan)                                                        | <b>1.</b> Eas                      | t Pens (18 total)                                                                                         |                                                     |              |                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                    | st Pens (24 total                                                                                         |                                                     |              |                             |                        |
| la <u>nu</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ire storage capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |                                    |                                                                                                           |                                                     |              |                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Length (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Width (m)                                                                            | Dept                               | th below ground le                                                                                        | evel (m)                                            |              | CB USE ONI<br>storage capa  |                        |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 153.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.9                                                                                 |                                    | 0                                                                                                         |                                                     |              |                             |                        |
| 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.9                                                                                 |                                    | 0                                                                                                         |                                                     |              |                             |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                                                                                  |                                    | TOTAL C                                                                                                   | CAPACITY                                            |              |                             |                        |
| Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nce water control syst<br>cribe the run-on and rur<br>attached runoff contro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                      |                                    |                                                                                                           |                                                     |              |                             |                        |
| Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cribe the run-on and rur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | noff control system                                                                  |                                    |                                                                                                           |                                                     |              |                             |                        |
| See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cribe the run-on and rur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | noff control system ol plan and calculations                                         |                                    |                                                                                                           |                                                     |              |                             |                        |
| Desc<br>See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cribe the run-on and rur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | noff control system ol plan and calculations                                         | See at<br>equiva<br>perme          | le details (as requi<br>ttached WSP rep<br>alent layer thickn<br>eability test result                     | oort for bo<br>ess, soil t                          |              |                             | ılated                 |
| Desc<br>See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | attached runoff control  rally occurring protections of naturally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | noff control system ol plan and calculations ctive layer details                     | See at<br>equiva<br>perme          | ttached WSP rep<br>alent layer thickn                                                                     | oort for bo<br>ess, soil t                          |              |                             |                        |
| See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | attached runoff control  attached runoff control  rally occurring protections of naturally arring protective layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | noff control system ol plan and calculations  tive layer details  7.3  (m            | See at equiva perme                | ttached WSP repalent layer thickneability test result                                                     | oort for bo<br>ess, soil t<br>is<br>% silt          | extural ana  | lyses and                   | % clay                 |
| Described and the second secon | attached runoff control attached runoff control rally occurring protections of naturally arring protective layer Soil texture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | noff control system of plan and calculations  tive layer details  7.3 (m)  28 % sand | See at equiva perme  Hydrau        | ttached WSP repalent layer thickneability test result                                                     | oort for bo<br>ess, soil t<br>is<br>% silt          | extural anal | lyses and                   | % clay                 |
| Desc<br>See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rally occurring protections of naturally attached runoff control attached runoff conductivity and runoff runo | ctive layer details  7.3 (m  28 % sand  Depth and type of soil tested                | See at equiva perme  Hydrau  2.2 x | ttached WSP repalent layer thickneability test result  55  ulic conductivity (conductivity (conductivity) | oort for bo<br>ess, soil t<br>ts<br>% silt<br>cm/s) | extural anal | 17 est standard             | % clay<br>used<br>teat |
| See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rally occurring protections of naturally attached runoff control attached runoff conductivity and runoff runo | ctive layer details  7.3 (m  28 % sand  Depth and type of soil tested                | See at equiva perme  Hydrau  2.2 x | ttached WSP repalent layer thickneability test result  55  ulic conductivity (4)                          | oort for boess, soil tots % silt cm/s)              | extural anal | 17 est standard alling head | % cla                  |





Application under the Agricultural Operation Practices Act for a confined feeding operation, manure collection area and/or manure storage facility(ies)

| Provide a plan and show how you calculated the area contributing to runoff for each catch basin  See attached runoff calculation and site map  Provide a plan and show how you calculated the area contributing to runoff for each catch basin  See attached runoff calculation and site map  Provide a plan and show how you calculated the area contributing to runoff for each catch basin  See attached runoff calculation and site map  Provide a plan and show how you calculated the area contributing to runoff for each catch basin  See attached runoff calculation and site map  Provide a plan and show how you calculated the area contributing to runoff for each catch basin  See attached runoff calculation and site map  Provide a plan and show how you calculated the area contributing to runoff for each catch basin  See attached runoff calculation and site map  Provide a plan and show how you calculated was a site of the part of the plan of the |                                                                  |                 |           |                                           |                  |                                                        |                        |                            |                           |                    |                            |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------|-----------|-------------------------------------------|------------------|--------------------------------------------------------|------------------------|----------------------------|---------------------------|--------------------|----------------------------|---|
| And the part of the part of the plane (as indicated on site plane)  2. South Catch Basin  2. South Catch Basin  3. South Catch Basin  2. South Catch Basin  3. South Catch Basin  3. South Catch Basin  4. South Catch Basin  5. South Catch Basin  6. South Catch Basin  6. South Catch Basin  7. South Catch Basin  8. South Catch Basin  9. South Catch Basin |                                                                  |                 |           |                                           |                  |                                                        |                        |                            |                           |                    | rring protective layer)    |   |
| Catch basin capacity   Calculated storage capacity   Calculated    |                                                                  |                 |           |                                           |                  |                                                        |                        |                            |                           | , , ,              | 3,                         |   |
| Determination of runoff area   Provide a plan and show how you calculated the area contributing to runoff for each catch basin   See attached runoff calculation and site map   Catch basin capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  | ,               | ,         |                                           |                  | <u> </u>                                               | •                      | South Ca                   | tch Bacin                 |                    |                            |   |
| Provide a plan and show how you calculated the area contributing to runoff for each catch basin  See attached runoff calculation and site map    Catch basin capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                 |           |                                           |                  |                                                        |                        |                            |                           |                    |                            |   |
| Catch basin capacity   Catch basin capacity   Length (m)   Width (m)   Total depth (m)   Width (m)   Total depth (m)   Depth below ground level (m)   Inside end walls   Slope run:rise   NRCB USE ONLY   Calculated storage capacity (excl. 0.5 m freeboard) (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dete                                                             | ermination of   | runoff a  | area                                      |                  |                                                        | <b>.</b>               |                            |                           |                    |                            |   |
| Catch basin capacity  Length (m) Width (m) Total depth (m) Total depth (m) Width (m) Total depth (m) T |                                                                  |                 |           |                                           | ou calculated ti | he area contri                                         | ibutin                 | g to runoff                | for each cat              | ch basin           |                            |   |
| Length (m)   Width (m)   Total depth (m)   Provided early walls   Inside end walls   Inside walls   Inside walls   Calculated storage capacity (excl. 0.5 m freeboard) (m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Se                                                               | e attached ru   | ınoff cal | culati                                    | on and site m    | пар                                                    |                        |                            |                           |                    |                            |   |
| Length (m)   Width (m)   Total depth (m)   Potal depth (m)   Pot   |                                                                  |                 |           |                                           |                  |                                                        |                        |                            |                           |                    |                            |   |
| Length (m)   Width (m)   Total depth (m)   Potal depth (m)   Pot   |                                                                  |                 |           |                                           |                  |                                                        |                        |                            |                           |                    |                            |   |
| Length (m)   Width (m)   Total depth (m)   Ground level (m)   Inside end walls   Inside end walls   Walls   Calculated storage capacity (excl. 0.5 m freeboard) (m³)  1.   130   40   2   2   3:1   3:1   n/a    2.   150   36.6   2   2   3:1   3;1   n/a    3.   TOTAL CAPACITY    Naturally occurring protective layer details  Thickness of naturally occurring protective layer   12.3   (m)   Provide details (as required)   See attached WSP report for borehole locations, calculated equivalent layer thickness, soil textural analyses and permeability test results  Soil texture   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cat                                                              | ch basin cap    | acity     |                                           | 1                |                                                        |                        |                            | (1                        |                    | NDCD USE ONLY              |   |
| 1.   130   40   2   2   3:1   3:1   n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  | Length (m)      | Width     | (m)                                       |                  |                                                        |                        |                            | Inside                    |                    |                            | V |
| 2. 150 36.6 2 2 3:1 3:1 n/a    TOTAL CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                  | Length (III)    | Width     | (11)                                      | (m)              |                                                        |                        |                            |                           |                    |                            |   |
| 3.   TOTAL CAPACITY    Naturally occurring protective layer details   Total capacity    Total capacity    Naturally occurring protective layer details    Thickness of naturally occurring protective layer    12.3 (m)   Provide details (as required)    See attached WSP report for borehole locations, calculated equivalent layer thickness, soil textural analyses and permeability test results    Soil texture   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.                                                               | 130             | 40        |                                           | 2                | 2                                                      |                        | 3:1                        | 3:1                       | n/a                |                            |   |
| Naturally occurring protective layer details  Thickness of naturally occurring protective layer  Indicate the sequence of the  | 2.                                                               | 150             | 36.6      | 6                                         | 2                | 2                                                      |                        | 3:1                        | 3;1                       | n/a                |                            |   |
| Naturally occurring protective layer details  Thickness of naturally occurring protective layer    12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.                                                               |                 |           |                                           |                  |                                                        |                        |                            |                           |                    |                            |   |
| Thickness of naturally occurring protective layer  12.3(m)  Provide details (as required) See attached WSP report for borehole locations, calculated equivalent layer thickness, soil textural analyses and permeability test results  Soil texture  15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |                 |           |                                           |                  |                                                        |                        |                            | TOTAL                     | CAPACITY           |                            |   |
| Thickness of naturally occurring protective layer  12.3(m)  Provide details (as required) See attached WSP report for borehole locations, calculated equivalent layer thickness, soil textural analyses and permeability test results  Soil texture  15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Natı                                                             | irally occurri  | ng prote  | ective                                    | layer details    | 6                                                      |                        |                            |                           |                    |                            |   |
| 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TI                                                               | nickness of nat | urally    |                                           |                  |                                                        | Prov<br>See            | vide details<br>attached \ | (as required<br>NSP repor | d)<br>t for boreho | ole locations, calculated  |   |
| Soil texture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | laver 12.3                                                       |                 |           |                                           |                  | equivalent layer thickness, soil textural analyses and |                        |                            |                           |                    |                            |   |
| Sand   Silt      | Cai                                                              | Ltoytuno        |           |                                           | 45               | ` ,                                                    | Pon                    | modelinty to               |                           |                    | 40                         |   |
| Hydraulic conductivity - naturally occurring protective layer  4.4 - 6.0 m  2.0 x 10-7 cm/s  Modified falling head test  Catch Basin - Design and management requirements can be found in Technical Guideline Agdex 096-101  Requirements met: YES NO Condition required: YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Soil texture 15% sand                                            |                 |           |                                           | % si <b>l</b> t  |                                                        |                        | % clay                     |                           |                    |                            |   |
| naturally occurring protective layer  4.4 - 6.0 m  2.0 x 10-7 cm/s  Modified falling head test  Catch Basin - Design and management requirements can be found in Technical Guideline Agdex 096-101  Requirements met: YES NO  Condition required: YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |                 |           |                                           |                  |                                                        | Hyd                    | draulic cond               | uctivity (cm              | /s) D              | escribe test standard used |   |
| Catch Basin – Design and management requirements can be found in Technical Guideline Agdex 096-101  Requirements met: YES NO  Condition required: YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | naturally occurring 44-60 m                                      |                 |           | 2.0 x 10-7 cm/s Modified falling head tes |                  |                                                        | fied falling head test |                            |                           |                    |                            |   |
| Technical Guideline Agdex 096-101  Requirements met:  YES NO  Condition required:  YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | procedure tayer                                                  |                 |           |                                           |                  |                                                        |                        |                            |                           |                    |                            |   |
| If soil info differs per facility include additional soils page.  Condition required: YES NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |                 |           |                                           | t requirements c | an be found in                                         | 1                      | NRCB US                    |                           |                    | t. Dyrs Duo                |   |
| If soil into differs per facility include additional soils page.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                 |           |                                           |                  |                                                        |                        | •                          |                           |                    |                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If soil info differs per facility include additional soils page. |                 |           |                                           |                  |                                                        |                        |                            |                           |                    |                            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                 |           |                                           |                  |                                                        |                        |                            |                           |                    |                            |   |

#### **Catch Basin Dimensions Calculator**

| Catch Basin<br>Size of Catch Basin | Metric |                |
|------------------------------------|--------|----------------|
| Length* <sub>4</sub>               | 130.0  | m              |
| Width*4                            | 40.0   | m              |
| Total Depth* <sub>4</sub>          | 20     | m              |
| Water Depth                        | 1.50   | m              |
| End Slope* <sub>4</sub>            | 3      | run:rise       |
| Side Slope* <sub>4</sub>           | 3      | run:rise       |
| Length of Bottom                   | 118.0  |                |
| Width of Bottom                    | 28.0   |                |
| Total Capacity @ top of Bank       | 8,456  | m <sup>3</sup> |

| (without freeboard)           |       |                |
|-------------------------------|-------|----------------|
| Length (Top of liquid level)  | 127.0 | m              |
| Width (Top of liquid level)   | 37.0  | m              |
| Depth                         | 2.0   | m              |
| Water Depth                   | 1.50  | m              |
| End Slope                     | 3     | runtrise       |
| Side Slope                    | 3     | runtrise       |
| Total Volume@ freeboard depth | 5,982 | $m^3$          |
| Surface Area of Liquid Manure | 4.699 | m <sup>2</sup> |

| Capacity of Ca                        | tch Basin                        |
|---------------------------------------|----------------------------------|
| 426.51                                | Feet                             |
| 131.23                                | Feet                             |
| 6.56                                  | Feet                             |
| 4.92                                  | Feet                             |
| 3                                     | run:rise                         |
| 3                                     | runtrise                         |
|                                       | 7                                |
| 298,621                               |                                  |
| 1,860,059                             | Imp. Gal                         |
|                                       |                                  |
| Volume at Free                        | eboard                           |
| Volume at Free                        |                                  |
|                                       | Feet                             |
| 416.67<br>121.39<br>6.56              | Feet<br>Feet                     |
| 416.67<br>121.39<br>6.56              | Feet<br>Feet                     |
| 416 67<br>121 39<br>6 56<br>4 92      | Feet<br>Feet                     |
| 416 67<br>121 39<br>6 56<br>4 92<br>3 | Feet<br>Feet<br>Feet<br>Feet     |
| 416.67<br>121.39<br>6.56<br>4.92      | Feet<br>Feet<br>Feet<br>run:rise |

50,580 ft<sup>2</sup>

| Name <sub>1</sub>          |            | Van Huige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | enbos                  |        |
|----------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|
| Land Location <sub>1</sub> |            | North Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |        |
| Area <sub>2</sub>          | Length (m) | Width (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Area (m <sup>2</sup> ) |        |
| 1                          | 11,321     | AND DESCRIPTION OF THE PERSON | 1                      | 11,321 |
| 2                          | 23,660     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                      | 23,660 |
| 3                          | 5,900      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                      | 5,900  |
| 4                          | 16,000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                      | 16,000 |
| 5                          | 9,000      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                      | 9,000  |
|                            | Total Area |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                     | 65,881 |
|                            | - 44       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | -      |

| Fort Macleod 90 |    |    |
|-----------------|----|----|
| Design Rainfall | 90 | mm |

| Catch Basin | Length (m) | Width (m) | Area (m²) |       |
|-------------|------------|-----------|-----------|-------|
| 1           | 130        | 40        |           | 5,200 |

|                      | Basin Design Volume<br>edlot Area(s) only)                  |
|----------------------|-------------------------------------------------------------|
| 3,854 m <sup>3</sup> | 136,104 ft <sup>3</sup>                                     |
|                      |                                                             |
|                      |                                                             |
|                      |                                                             |
|                      |                                                             |
|                      |                                                             |
| Roller Compacted C   | Concrete (Runoff Coefficient = 1.0)                         |
| Roller Compacted C   | Concrete (Runoff Coefficient = 1.0) 209,391 ft <sup>3</sup> |

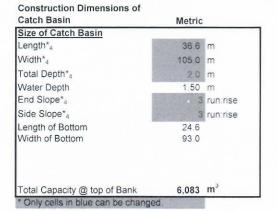
\*\* Storage volume should be same or slightly greater than design storage volume.



Lines in Black - Catch basin dimension

Lines in Blue - full level

NTS - Not Drawn To Scale


North Area = West Pens + East Pens + North Pens + Existing Corrals = ((160.3 x 36.9) x 4) + ((153.4 x 36.9) x 2) + (160.3 m x 36.8) approx. + (16000m2 + 9,000m2)

#### **Catch Basin Dimensions Calculator**

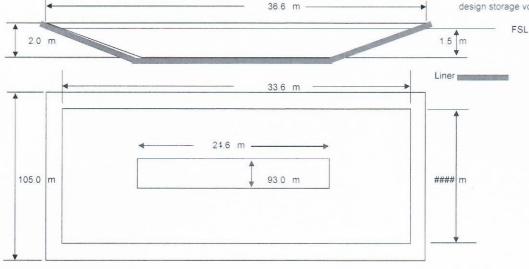
#### Southern Catch Basin



3,843



| Surface Area of Liquid Manure                           | 3,427     | m <sup>2</sup> |
|---------------------------------------------------------|-----------|----------------|
| Total Volume@ freeboard depth                           | 4,266     | m <sup>3</sup> |
| Side Slope                                              | 3         | runtrise       |
| End Slope                                               | 3         | run:rise       |
| Water Depth                                             | 1.50      | m              |
| Depth                                                   | 2.0       | m              |
| Width (Top of liquid level)                             | 102.0     | m              |
| Length (Top of liquid level)                            | 33.6      | m              |
| Storage Volume of Catch Basin at<br>(without freeboard) | Dooigii . | supuoity       |


| Capacity of Ca |                 |
|----------------|-----------------|
| 344 49         |                 |
|                | Feet            |
|                | Feet            |
|                | run rise        |
|                |                 |
| 3              | runtrise        |
| 214,812        | ft <sup>3</sup> |
| 1,338,028      |                 |
| Volume at Free | eboard          |
| 110.24         | Foot            |
| 334.65         |                 |
| 6.56           |                 |
| 4.92           |                 |
| 3              | runtrise        |
| 3              | runtrise        |
| 150,652        | ft <sup>3</sup> |
| 938,388        |                 |
| 36,890         | ft <sup>2</sup> |

| Name <sub>1</sub> Land Location <sub>1</sub> Area <sub>2</sub> Length (m) |            | Van Huiger | nbos<br>outh Area |
|---------------------------------------------------------------------------|------------|------------|-------------------|
|                                                                           |            |            | Area (m²)         |
| Alea <sub>2</sub>                                                         | Length (m) | Width (m)  | Alca (III )       |
| 1                                                                         | 23,660     | 1          | 23,660            |
| 2                                                                         | 22,642     | 1          | 22,642            |
| 3                                                                         | 0          | 1          | 0                 |
| 4                                                                         | 0          | 1          | 0                 |
| 5                                                                         | 0          | 1          | 0                 |
|                                                                           | Total Area |            | 46,302            |
|                                                                           |            |            | -                 |

| Design Rainfall        |    | 90        | mm        |      |
|------------------------|----|-----------|-----------|------|
| Catch Basin Length (m) |    | Width (m) | Area (m²) |      |
| 1                      | 37 | 105       |           | 3,84 |

|                                                                       | asin Design Volume                |  |  |  |
|-----------------------------------------------------------------------|-----------------------------------|--|--|--|
| (Feedlot Area(s) only)<br>2,709 m <sup>3</sup> 95,656 ft <sup>3</sup> |                                   |  |  |  |
|                                                                       |                                   |  |  |  |
|                                                                       |                                   |  |  |  |
|                                                                       |                                   |  |  |  |
|                                                                       |                                   |  |  |  |
| Roller Compacted Co                                                   | oncrete (Runoff Coefficient = 1.0 |  |  |  |
| Roller Compacted Co                                                   | oncrete (Runoff Coefficient = 1.0 |  |  |  |

\*\* Storage volume should be same or slightly greater than design storage volume.

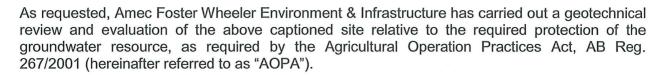


- Lines in Blue - full level

Lines in Black - Catch basin dimension

NTS - Not Drawn To Scale

December 21, 2015


AMEC File: BX30375

Van Huigenbos Farms P.O. Box 2311 Fort Macleod, Alberta TOL 0Z0

Attention: Mr. Garrett Van Huigenbos

Re: Geotechnical Review and Evaluation Proposed Calf Pens and Catch Basin

SE-21-9-26-W4, near Fort Macleod, Alberta



This letter encompasses the soil conditions associated with a row of recently constructed calf pens, a proposed row of calf pens, and a proposed catch basin, at the general locations illustrated on Figure 1.

In order to demonstrate the suitability of the natural clay soils at the site of the calf barn for consideration as a naturally occurring protective layer, a series of boreholes were advanced at the site on March 24, 2014 and September 9, 2015, at the locations illustrated on Figure 1. The boreholes were advanced by a truck-mounted drill rig owned and operated by Chilako Drilling Services, and extended to depths ranging between about 3 m and 6 m below existing grades. Boreholes VH1-14 to VH9-14 were logged by Mr. Larry DeLong of Chilako Drilling Services Ltd (see attachments), while boreholes VH10-15 to VH16-15 were logged by an Amec geotechnical engineer.

In general, the soils encountered within the current test holes near surface lacustrine silt and sand (to depths of up to 1.5 m below grade), and underlain by low permeable lacustrine clay to the termination depths of the boreholes. A minimum of 1.5 m of clay was encountered at each of the borehole locations

In order to demonstrate the permeability of the subsurface clay soil, 50 mm diameter PVC monitoring wells were constructed in boreholes VH6-14 and VH11-15. Borehole VH6-14 was screened from 2.5 m to 3.9 m depth and borehole VH11-15 was screened from 2.7 m to 3.8 m depth. Well saturation of the 50 mm diameter monitoring well was carried out by filling the monitoring well to the top of the well for several consecutive days. On the third and fourth days, the water depth was measured at a consistent depth of about 0.17 m at VH6-14, and at a depth of about 0.54 m at VH11-15. During the testing, the well locations were protected, and care was taken to ensure that the column of water being monitored in the well was not frozen during the testing.

In order to calculate the permeability of the screened portion of the clay stratum, a modified falling head test (as outlined in the USBR *Engineering Geology Field Manual Volume 2* [2001]) was used. The input variables and output data are outlined on the *In Situ Permeability Test* 

Amec Foster Wheeler Environment & Infrastructure 469 – 40 Street South Lethbridge, AB, CANADA T1J 4M1 Tel +1 (403) 327-7474 Fax +1 (403) 327-7682

www.amecfw.com





reports, attached. As outlined on the reports, the results of the *in situ* permeability testing indicate a hydraulic conductivity,  $k_s$ , of <u>2.2 x 10<sup>-8</sup> cm/s</u> at borehole VH6-14, and <u>8.4 x 10<sup>-8</sup> cm/s</u> at borehole VH11-15

Using the measured permeability of the clay stratum, the 1.4 m portion of clay which has been screened at VH6-14 has been estimated to represent an equivalent of about 64 m of naturally occurring materials having a hydraulic conductivity of 1 x 10-6 cm/s. This represents natural material protection well in excess of the minimum requirements outlined by the AOPA for solid manure storage (minimum 2 m, Section 9.5-c).

Similarly, the 1.1 m portion of clay which has been screened at VH11-15 has been estimated to represent an equivalent of about 13 m of naturally occurring materials having a hydraulic conductivity of 1 x 10-6 cm/s. This represents natural material protection in excess of the minimum requirements outlined by the AOPA for a catch basin (minimum 5 m, Section 9.5-b).

#### Conclusion

Based on the results of the current investigation and permeability testing, and our understanding of the site and proposed development at the site, it is AMEC's opinion that the naturally occurring materials at the existing feedlot pens and catch basin satisfy the requirements for a naturally occurring 'protective layer' for the existing pens, as outlined in the AOPA.

It is noted that a layer of near surface silty sand was encountered at the proposed catch basin location. This sand will require removal from the side slope areas at the time of construction, and reconstruction of the upper catch basin side slopes using low permeable clay soils will be required. The existing clay soils below the upper sandy soils is considered suitable for the upper side slope construction. Geotechnical review of the entire catch basin excavation and reconstruction of these upper side slopes is recommended.

We trust this satisfies your present requirements. If you have questions or require further information or clarification, please don't hesitate to contact the undersigned.

Respectfully submitted,

Amec Foster Wheeler Environment & Infrastructure

A division of Amec Foster Wheeler, Americas Ltd.

ES.

John Lobbezoo, P.Eng. Geotechnical Engineer

APEGA Permit: P04546

cc 21,2015

Attachments:

Figure 1 – Borehole Location Plan

In Situ Permeability Test Calculations – VH6-14 & VH11-15

Soil Profile and Parent Material Description, Chilako Drilling Services (VH1-14 to VH9-14)

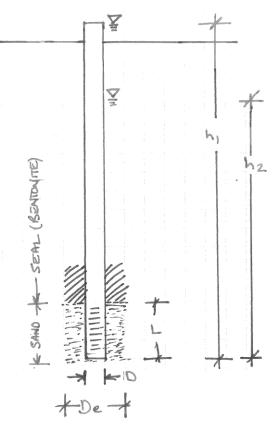
Test Pit Summary Table (VH10-15 to VH16-15)

AMEC File: BX30375





Modified Falling Head Permeability Equation


$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[ \frac{\sinh^{-1}\frac{\ell}{r_{e}}}{2} \ln \left[ \frac{2H_{1} - \ell}{2H_{2} - \ell} \right] - \ln \left[ \frac{2H_{1}H_{2} - \ell H_{2}}{2H_{1}H_{2} - \ell H_{1}} \right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

#### VH6-14

AMEC File: BX30375

| ES            | Terms | Value  | Definition                                     |
|---------------|-------|--------|------------------------------------------------|
| ВГ            | D     | 0.0520 | diameter of standpipe (m)                      |
| Ι¥            | De    | 0.1500 | diameter of borehole (m)                       |
| AR            | L     | 1.30   | length of sand section (m)                     |
| >             | h1    | 4.60   | initial height of water above base of hole (m) |
| 5             | h2    | 4.43   | final height of water above base of hole (m)   |
| NPUT VARIABLE | t     | 24.0   | time of test (h)                               |
| _             |       |        |                                                |



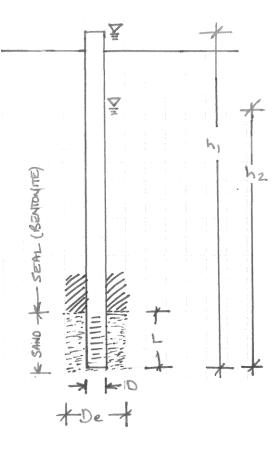
Ks = 2.2E-08 cm/sec

### VH11-15



## In Situ Permeability Test

Modified Falling Head Permeability Equation


$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[ \frac{\sinh^{-1}\frac{\ell}{r_{e}}}{2} \ln \left[ \frac{2H_{1} - \ell}{2H_{2} - \ell} \right] - \ln \left[ \frac{2H_{1}H_{2} - \ell H_{2}}{2H_{1}H_{2} - \ell H_{1}} \right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

#### VH11-15

AMEC File: BX30375

| ES      | Terms | Value  | Definition                                     |
|---------|-------|--------|------------------------------------------------|
| VARIABL | D     | 0.0520 | diameter of standpipe (m)                      |
| ₹       | De    | 0.1500 | diameter of borehole (m)                       |
| A       | L     | 1.10   | length of sand section (m)                     |
|         | h1    | 4.40   | initial height of water above base of hole (m) |
| NPC1    | h2    | 3.86   | final height of water above base of hole (m)   |
| 벌       | t     | 24.0   | time of test (h)                               |
| _       |       |        |                                                |



Ks = 8.4E-08 cm/sec

### **CHILAKO DRILLING SERVICES LTD**

Box 942 Coaldale, Alberta, T1M 1M8 (403) 345-3710

#### SOIL PROFILE AND PARENT MATERIAL DESCRIPTION

Site Location: Van Huigenbos Farms SE21-9-26W4 Date: 24-Mar-14

| Hole # | Location                                                                        | Depth                       |                    |                   | Geological         | Sample  | Date: 24-Mar-14 Remarks                                                                                                                  |
|--------|---------------------------------------------------------------------------------|-----------------------------|--------------------|-------------------|--------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------|
| VH1-14 | West end                                                                        | 0-1.0                       | FSL                | D                 | Lac                |         | Sand, silty                                                                                                                              |
|        | of                                                                              | 1.0-1.05                    | S+Gr               | D                 | Lac                |         |                                                                                                                                          |
|        | proposed                                                                        | 1.05-2.0                    | SiCL               | D                 | Lac                |         |                                                                                                                                          |
|        | corrals                                                                         | 2.0-3.0                     | SiCL               | VM-Sat            | Lac                |         | Med plastic, olive brown                                                                                                                 |
| VH2-14 | ~40m east<br>of VH-1                                                            | 0-1.2<br>1.2-1.5<br>1.5-3.0 | FSL<br>SiC<br>SiCL | D<br>M<br>VM-Sat  | Lac<br>Lac<br>Lac  |         | Sand lens @ 1.2m<br>Med plastic, olive brown<br>Med plastic, olive brown, high plastic layers<br>and silt layers                         |
| VH3-14 | ~40m east<br>of VH-2                                                            | 0-1.1<br>1.1-3.0            | FSL<br>SiC         | D<br>M            | Lac<br>Lac         |         | Med-high plastic, olive brown, silt layers<br>VM-Sat @ 1.8m                                                                              |
| VH4-14 | ~40m east<br>of VH-3                                                            | 0-0.6<br>0.6-1.5<br>1.5-3.0 | FSL<br>LFS<br>SiC  | D<br>SM<br>VM-Sat | Lac<br>Lac<br>Lac  | 0.6-1.5 | Some Silt<br>Oxidized, trace silt<br>Med plastic, olive brown, stiff                                                                     |
| VH5-14 | ~40m east<br>of VH-4                                                            | 0-1.2<br>1.2-3.0            | FSL<br>SiC         | D<br>VM-Sat       | Lac<br>Lac         |         | Med plastic, olivebrown, stiff, silt lenses<br>WTW Installed                                                                             |
| VH6-14 | ~40m east<br>of VH-5                                                            | 0-1.2<br>1.2-1.5<br>1.5-4.0 | FSL<br>FSL<br>SiC  | D<br>VM<br>VM     | Lac<br>Lac<br>Lac  | 1.5-3.0 | Med-high plastic, olive brown, stiff<br>HC Well<br>Total Depth 4.0m<br>Screen 2.5-3.9m<br>Sand 2.7-4.0m<br>Bent 0.6-2.7m<br>Stickup 0.6m |
| VH7-14 | ~40m east<br>of VH-6<br>~10m east<br>of west<br>boundary of<br>proposed<br>barn | 1.0 0.0                     | FSL<br>FM.S<br>SCL | D<br>D<br>VM-Sat  | Lac<br>Lac<br>Till | 1.5-3.0 | Trace very small gravel<br>Some gravel                                                                                                   |

| VH8-14 | ~30m NE                                  | 0-1.0                                             | FSL                               | D                     | Lac                      |                                                                                   |
|--------|------------------------------------------|---------------------------------------------------|-----------------------------------|-----------------------|--------------------------|-----------------------------------------------------------------------------------|
|        | of VH-7<br>center of<br>proposed<br>barn | 1.0-1.4<br>1.4-3.0                                | LM.S<br>CL                        | D<br>M                | Lac<br>Till              | Trace silt, trace gravel Some gravel, sand lenses (VM-Sat), stiff Low-med plastic |
| VH9-14 | barn                                     | 0-0.3<br>0.3-1.2<br>1.2-1.6<br>1.6-2.6<br>2.6-3.0 | LFS<br>FSL<br>LM.S<br>SiC<br>SiCL | D<br>D<br>M<br>VM-Sat | Lac<br>Lac<br>Lac<br>Lac | Trace gravel, trace silt Stiff, med-high plastic Firm, med plastic, olive brown   |
|        |                                          |                                                   |                                   |                       |                          |                                                                                   |



## **BOREHOLE SUMMARY TABLE (VH10-15 – VH10-16)**

Amec File: BX30375 Van Huigenbos Farms

Proposed Catch Basin and Calf Pens, SE21-9-26-W4M near Fort Macleod, Alberta

| Borehole VH10-15 |                                                                                                                             |                                                                              |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
| Depth:           |                                                                                                                             |                                                                              |  |  |  |
| 0.0 - 0.9        | SILTY SAND – fine to medium grained, compact, damp                                                                          |                                                                              |  |  |  |
| 0.9 – 4.6        | CLAY – medium plastic, lacustrine, silty, trace sand, laminations, brown, stiff moist -becoming very silty below 4.3m depth | Monitoring Well Detail:<br>25mm PVC Standpipe to<br>6.0m depth, hand-slotted |  |  |  |
| 4.6 – 5.0        | -gravelly silty and sand, very moist to wet                                                                                 |                                                                              |  |  |  |
| 5.0 – 6.0        | CLAY TILL – medium plastic, silty, trace sand, trace gravel, coal and oxide inclusions, brown, stiff to very stiff, moist   | Groundwater at 4.0m depth,<br>Sept 15, 2015                                  |  |  |  |
| 6.0              | End of Borehole at 6.0 m depth<br>-some seepage from 4.2m depth                                                             |                                                                              |  |  |  |
|                  | Borehole VH11-15                                                                                                            |                                                                              |  |  |  |
| Depth:           |                                                                                                                             |                                                                              |  |  |  |
| 0.0 – 0.8        | SILTY SAND – fine to medium grained, compact, damp                                                                          |                                                                              |  |  |  |
| 0.8 – 4.5        | CLAY – medium plastic, lacustrine, silty, trace sand, laminations, brown, stiff moist -becoming very silty below 4.2m depth | Monitoring Well Detail:                                                      |  |  |  |
| 4.5 – 5.0        | -gravelly silty and sand, very moist to wet                                                                                 | 50mm PVC Standpipe<br>Screened: 2.7m – 3.8m                                  |  |  |  |
| 5.0 – 6.0        | CLAY TILL – medium plastic, silty, trace sand, trace gravel, coal and oxide inclusions, brown, stiff to very stiff, moist   | Sand Pack: 2.7m – 3.8m<br>Bentonite Seal: 0m – 2.7m<br>Stick-up: 0.6m        |  |  |  |
| 6.0              | End of Borehole at 6.0 m depth -some seepage from 4.2m depth                                                                |                                                                              |  |  |  |
|                  | Borehole VH12-15                                                                                                            |                                                                              |  |  |  |
| 0.0 - 0.9        | SILTY SAND – fine to medium grained, compact, damp                                                                          |                                                                              |  |  |  |
| 0.9 – 3.0        | CLAY – medium plastic, lacustrine, silty, trace sand, laminations, brown, stiff moist                                       |                                                                              |  |  |  |
| 3.0              | End of Borehole at 3.0 m depth -borehole open and dry upon completion                                                       |                                                                              |  |  |  |



|                  | Borehole VH13-15                                                                             |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|
| 0.0 – 1.0        | SILTY SAND – fine to medium grained, compact, damp                                           |  |  |  |  |  |
| 1.0 – 3.0        | CLAY – medium plastic, lacustrine, silty, trace sand, laminations, brown, stiff moist        |  |  |  |  |  |
| 3.0              | End of Borehole at 3.0 m depth -borehole open and dry upon completion                        |  |  |  |  |  |
|                  | Borehole VH14-15                                                                             |  |  |  |  |  |
| 0.0 – 1.0        | SILTY SAND – fine to medium grained, compact, damp                                           |  |  |  |  |  |
| 1.0 – 3.0        | <b>CLAY</b> – medium plastic, lacustrine, silty, trace sand, laminations, brown, stiff moist |  |  |  |  |  |
| 3.0              | End of Borehole at 3.0 m depth -borehole open and dry upon completion                        |  |  |  |  |  |
|                  | Borehole VH15-15                                                                             |  |  |  |  |  |
| 0.0 – 1.1        | SILTY SAND – fine to medium grained, compact, damp                                           |  |  |  |  |  |
| 1.1 – 3.0        | <b>CLAY</b> – medium plastic, lacustrine, silty, trace sand, laminations, brown, stiff moist |  |  |  |  |  |
| 3.0              | End of Borehole at 3.0 m depth -borehole open and dry upon completion                        |  |  |  |  |  |
| Borehole VH16-15 |                                                                                              |  |  |  |  |  |
| 0.0 – 1.2        | SILTY SAND – fine to medium grained, compact, damp                                           |  |  |  |  |  |
| 1.12 – 3.0       | <b>CLAY</b> – medium plastic, lacustrine, silty, trace sand, laminations, brown, stiff moist |  |  |  |  |  |
| 3.0              | End of Borehole at 3.0 m depth -borehole open and dry upon completion                        |  |  |  |  |  |

- <u>Table Notes:</u>
  -borehole information to be read in conjunction with AMEC report BX30375.
- -boreholes advanced using C1172 drill provided by Chilako Drilling Services on September 9, 2015
- -see Figure 1 for borehole locations

AMEC File: BX30375

13 March 2024



3102 – 12 Avenue North Lethbridge, Alberta T1H 5V1 T: +1 403 327-7474 www.wsp.com

WSP File: BX11613

Van Huigenbos Farms c/o Linkage Ag Solutions Box 1120 Coaldale, Alberta T1M 1M9

Attention: Mr. Cody Metheral:

Re: Geotechnical Review and Evaluation

**NRCB Permitting of Proposed Pens** 

SE-21-009-26-W4M, near Fort Macleod, Alberta

As requested, WSP E&I Canada Limited (WSP) has carried out a geotechnical review and evaluation of the above-captioned site relative to the required protection of the groundwater resource, as required by the Agricultural Operation Practices Act, AB Reg. 267/2001 (hereinafter referred to as "AOPA"). This letter describes site soil conditions to support a permit application related to an area of proposed feedlot pens and a proposed catch basin within SE-21-009-26-W4M (refer to Figure 1, attached).

In order to demonstrate the suitability of the naturally existing soils for consideration as a naturally occurring protective layer to the groundwater, fifteen (15) boreholes were advanced at the site on May 1, 2023. The boreholes were advanced at the approximate locations denoted as VF1-23 to VF15-23 on Figure 1, attached.

The boreholes were advanced by a truck-mounted drill rig owned and operated by Chilako Drilling Services and extended to depths ranging between 3.0 m and 9.2 m below existing grades. The boreholes were logged by Larry Delong of Chilako Drilling Services.

In general, the natural mineral soils encountered within the boreholes comprised of a layer of lacustrine sand loam, which was generally underlain by stiff medium plastic clay till below approximately 3.0 m depth. It was noted that perched water and saturated lacustrine soils were encountered to depths of up to about 1.2 m below existing grade. The perched water in this area appears to be localized, and is not considered to be a groundwater resource as defined by the AOPA.

Samples of soil collected from the screened zone of the boreholes VF5-23, VF10-23, VF11-23, and VF14-23 were subjected to laboratory grain size (i.e., hydrometer) analyses. The results (attached) indicate a textural breakdown of approximately:

**Table 1: Soil Textural Analyses** 

| Borehole/Depth     | % Sand | % Silt | % Clay |
|--------------------|--------|--------|--------|
| VF5-23 / 2.0-3.7m  | 24     | 55     | 21     |
| VF10-23 / 4.5-5.5m | 15     | 66     | 19     |
| VF11-23 / 3.1-4.0m | 28     | 55     | 17     |
| VF14-23 / 3.0-4.5m | 20     | 62     | 18     |

Van Huigenbos Farms, c/o Linkage Ag Solutions Geotechnical Review & Evaluation, SE-21-009-26-W4M, near Fort Macleod, Alberta 13 March 2024 Page 2



To measure the *in situ* permeability of the subsurface soils, 50 mm diameter PVC monitoring wells were constructed in boreholes VF5-23, VF10-23, VF11-23, and VF14-23. The test wells were screened at various depths from 2.7 m to 6.0 m below existing grades (see Table 2). Well saturation of the 50 mm diameter monitoring wells was carried out by filling the monitoring well to the top for several consecutive days. After several days of saturation, the 4-hour water drop for the wells ranged between 0.28 m and 0.43 m. The 4-hour water drop for each of the monitoring wells are listed in Table 2.

To calculate the permeability of the screened portion of the clay till strata at the test well locations, a modified falling head test (as outlined in the USBR Engineering Geology Field Manual Volume 2 [2001]) was used. The input variables and output data are outlined on the attached In Situ Permeability Test reports. The results of the permeability testing indicate an *in situ* hydraulic conductivity,  $k_s$ , values ranging between  $2.0 \times 10^{-7}$  cm/s and  $3.6 \times 10^{-7}$  cm/s (see Table 2).

Using the measured permeability of the clay stratum, the equivalent natural soil thicknesses of naturally occurring material having a hydraulic conductivity of  $1 \times 10^{-6}$  cm/s (the reference standard in AOPA) at the monitoring well locations has been calculated, and those thickness equivalents are presented in Table 2. As indicated, the equivalent thicknesses range between 6.4 m and 12 m. This represents natural material protection in excess of the minimum requirements outlined by the AOPA for solid manure storage (minimum 2 m, Section 9.5-c) and for catch basins (minimum 5 m, Section 9.5-b).

**Table 1: Permeability Test Results** 

| Borehole | 4-hr Water<br>Drop in Well<br>(m) | Length of<br>Screened Zone<br>(m) | Depth of<br>Screen<br>(m) | Calculated<br>Permeability  | Calculated Equivalent<br>1x10 <sup>-6</sup> cm/s Thickness<br>(m) |
|----------|-----------------------------------|-----------------------------------|---------------------------|-----------------------------|-------------------------------------------------------------------|
| VF5-23   | 0.43                              | 1.80                              | 2.7 – 4.5                 | 2.7 x 10 <sup>-7</sup> cm/s | 6.7                                                               |
| VF10-23  | 0.28                              | 1.60                              | 4.4 – 6.0                 | 2.0 x 10 <sup>-7</sup> cm/s | 12.3                                                              |
| VF11-23  | 0.36                              | 1.60                              | 2.9 – 4.5                 | 2.2 x 10 <sup>-7</sup> cm/s | 7.3                                                               |
| VF14-23  | 0.40                              | 1.55                              | 2.95 – 4.5                | 2.5 x 10 <sup>-7</sup> cm/s | 6.4                                                               |

Van Huigenbos Farms, c/o Linkage Ag Solutions Geotechnical Review & Evaluation, SE-21-009-26-W4M, near Fort Macleod, Alberta 13 March 2024 Page 3



#### Conclusion

Based on the results of the current investigation, permeability testing, and our understanding of the site and proposed development at the site, it is WSP's opinion that the naturally occurring materials at the site satisfy the AOPA requirements for permitting the proposed pens and proposed catch basin at this location.

We trust that this report satisfies your present requirements. Should you have any questions, please contact the undersigned at your convenience.

Yours truly,

WSP E&I Canada Limited

John Lobbezoo, P.Eng.

Principal Geotechnical Engineer

Co-authored by:
James Le, EIT
Geotechnical Services

Reviewed by:

Kevin Spencer, P.Eng., M.Eng.

Senior. Associate, Geotechnical Engineer

PERMIT/TO PRACTICE
WSP E&I CANADA LIMITED

RM SIGNATURE:

RM APEGA ID #: \_

11450

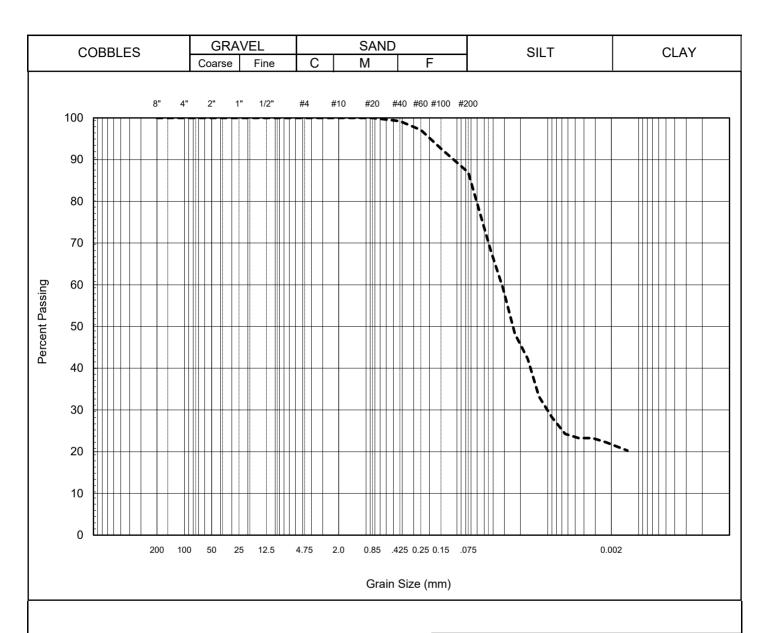
DATE:

13 minhrory

PERMIT NUMBER: P004546

The Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Attachments


Figure 1 Borehole Locations In Situ Permeability Test Calculations Hydrometer Test

Soil Profile and Parent Material Description, Chilako Drilling Services



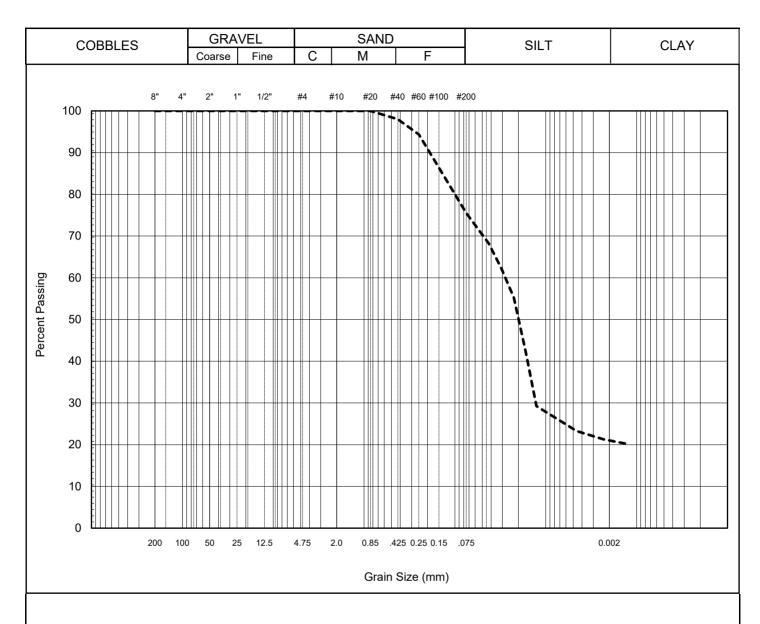
WSP E&I Canada Limited





|                |   | _ | _ |   |    |   |
|----------------|---|---|---|---|----|---|
| $\mathbf{\pi}$ | е | ш | а | ш | ks | - |

| Summary |        |    |        |    |   |
|---------|--------|----|--------|----|---|
| D10 =   | #N/A   | mm | Gravel | 0  | % |
| D30 =   | 0.0102 | mm | Sand   | 13 | % |
| D60 =   | 0.0322 | mm | Silt   | 65 | % |
| Cu =    | #N/A   |    | Clay   | 22 | % |
| Cc =    | #N/A   |    |        |    |   |


Project No: BX11613 Client: Linkage Ag Solution

Hole No: VF4-23 Sample:

**Depth (m):** 1.5-3.0 **Date:** June 1, 2023 **Tech:** TMW

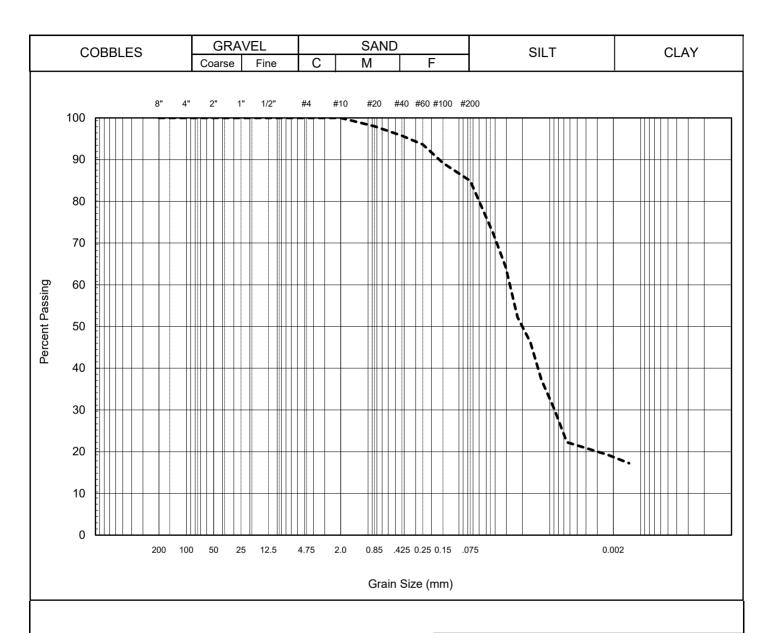
WSP E&I Canada Limited





| R            | en  | าว | rk | ٠. |
|--------------|-----|----|----|----|
| $\mathbf{r}$ | CII | ıa | ın | э. |

| Summary |        |    |        |    |   |  |  |
|---------|--------|----|--------|----|---|--|--|
| D10 =   | #N/A   | mm | Gravel | 0  | % |  |  |
| D30 =   | 0.0129 |    | Sand   | 24 | % |  |  |
| D60 =   | 0.0281 | mm | Silt   | 55 | % |  |  |
| Cu =    | #N/A   |    | Clay   | 21 | % |  |  |
| Cc =    | #N/A   |    |        |    |   |  |  |


Project No: BX11613 Client: Linkage Ag Solution

Hole No: VF4-23 Sample:

**Depth (m):** 2.0-3.7 **Date:** June 1, 2023 **Tech:** TMW

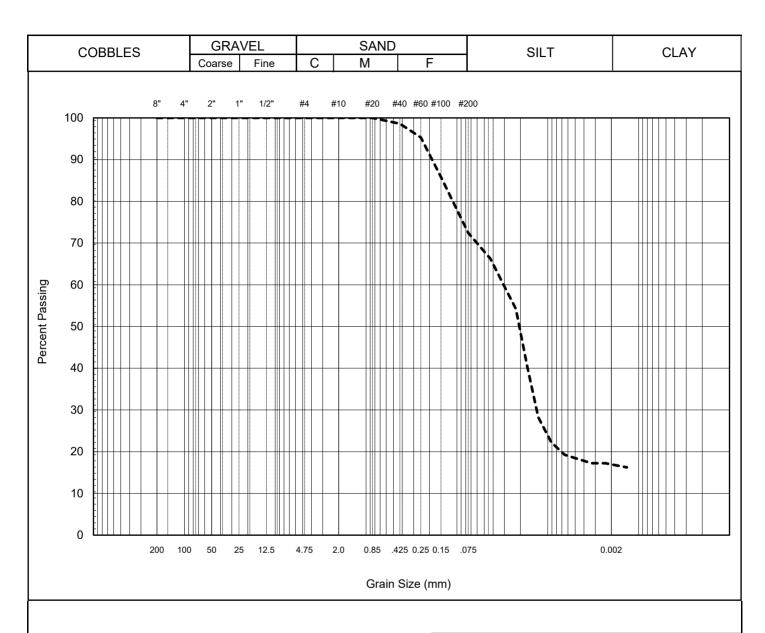
WSP E&I Canada Limited





| R            | Δ | m | 2 | r | ks |   |
|--------------|---|---|---|---|----|---|
| $\mathbf{r}$ | ㄷ |   | а |   | Λ3 | - |

|       | Summary |    |        |    |   |  |  |  |
|-------|---------|----|--------|----|---|--|--|--|
| D10 = | #N/A    | mm | Gravel | 0  | % |  |  |  |
| D30 = | 0.0089  | mm | Sand   | 15 | % |  |  |  |
| D60 = | 0.0278  | mm | Silt   | 66 | % |  |  |  |
| Cu =  | #N/A    |    | Clay   | 19 | % |  |  |  |
| Cc =  | #N/A    |    |        |    |   |  |  |  |


Project No: BX11613 Client: Linkage Ag Solution

Hole No: VF10-23 Sample:

**Depth (m):** 4.5-5.5 **Date:** June 1, 2023 **Tech:** TMW

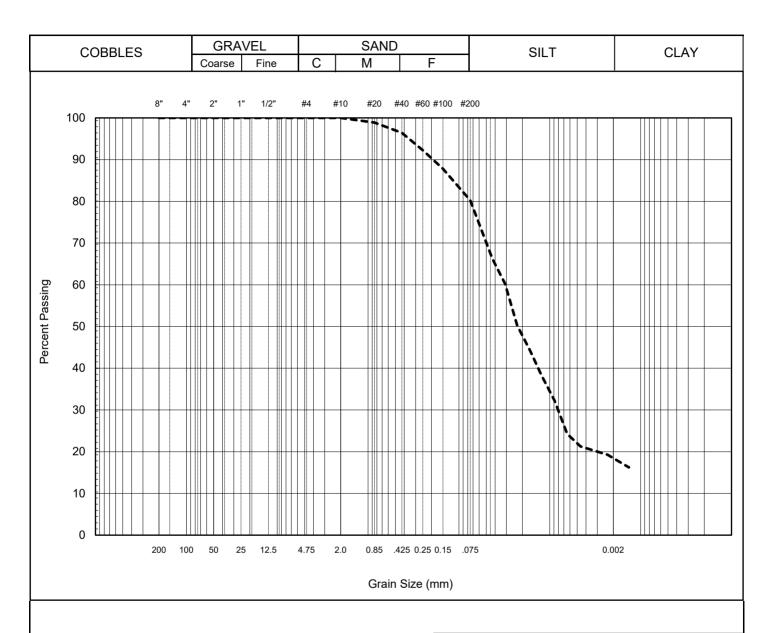
WSP E&I Canada Limited





|                |   | _ | _ |   |    |   |
|----------------|---|---|---|---|----|---|
| $\mathbf{\pi}$ | е | ш | а | ш | ks | - |

| Summary |        |    |        |    |   |  |  |
|---------|--------|----|--------|----|---|--|--|
| D10 =   | #N/A   | mm | Gravel | 0  | % |  |  |
| D30 =   | 0.0133 | mm | Sand   | 28 | % |  |  |
| D60 =   | 0.0307 | mm | Silt   | 55 | % |  |  |
| Cu =    | #N/A   |    | Clay   | 17 | % |  |  |
| Cc =    | #N/A   |    |        |    |   |  |  |


Project No: BX11613 Client: Linkage Ag Solution

Hole No: VF11-23 Sample:

**Depth (m):** 3.1-4.0 **Date:** June 1, 2023 **Tech:** TMW

WSP E&I Canada Limited





|                |   | _ | _ |   |    |   |
|----------------|---|---|---|---|----|---|
| $\mathbf{\pi}$ | е | ш | а | ш | ks | - |

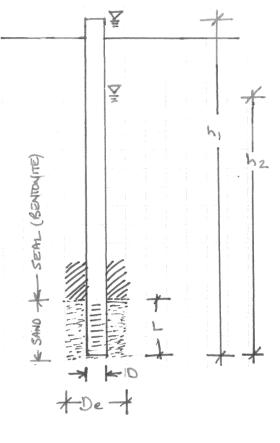
| Summary |        |    |        |    |   |  |  |
|---------|--------|----|--------|----|---|--|--|
| D10 =   | #N/A   | mm | Gravel | 0  | % |  |  |
| D30 =   | 0.0082 | mm | Sand   | 20 | % |  |  |
| D60 =   | 0.0309 | mm | Silt   | 62 | % |  |  |
| Cu =    | #N/A   |    | Clay   | 18 | % |  |  |
| Cc =    | #N/A   |    |        |    |   |  |  |

Project No: BX11613 Client: Linkage Ag Solution

Hole No: VF14-23 Sample:

**Depth (m):** 3.0-4.5 **Date:** June 1, 2023 **Tech:** TMW




Modified Falling Head Permeability Equation

$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[ \frac{\sinh^{-1}\frac{\ell}{r_{e}}}{2} \ln \left[ \frac{2H_{1} - \ell}{2H_{2} - \ell} \right] - \ln \left[ \frac{2H_{1}H_{2} - \ell H_{2}}{2H_{1}H_{2} - \ell H_{1}} \right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

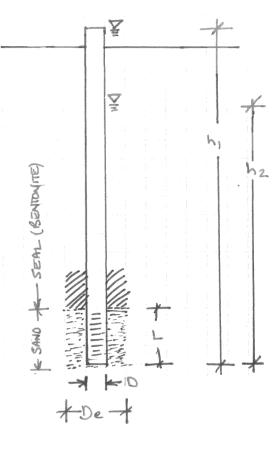
#### VF5-23 - VanHuigenbos Farms

| NPUT VARIABLES | Terms D De L  | 0.1500<br>1.80 | Definition diameter of standpipe (m) diameter of borehole (m) length of sand section (m) initial height of water above base of hole (m) |
|----------------|---------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| V TUANI        | h1<br>h2<br>t | 4.67           | initial height of water above base of hole (m) final height of water above base of hole (m) time of test (h)                            |



$$k_s = 2.5E-07$$
 cm/sec




Modified Falling Head Permeability Equation

$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[ \frac{\sinh^{-1}\frac{\ell}{r_{e}}}{2} \ln \left[ \frac{2H_{1} - \ell}{2H_{2} - \ell} \right] - \ln \left[ \frac{2H_{1}H_{2} - \ell H_{2}}{2H_{1}H_{2} - \ell H_{1}} \right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

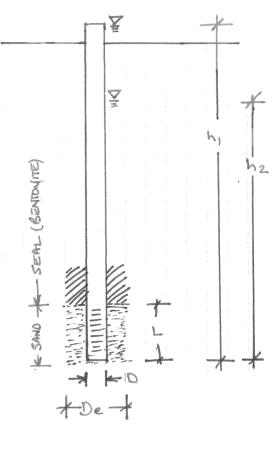
#### VF10-23 - VanHuigenbos Farms

| <b>'</b> 0     |       |        |                                                |
|----------------|-------|--------|------------------------------------------------|
| ш              | Terms | Value  | Definition                                     |
| NPUT VARIABLES | D     | 0.0520 | diameter of standpipe (m)                      |
| ₹              | De    | 0.1500 | diameter of borehole (m)                       |
| Ą              | L     | 1.60   | length of sand section (m)                     |
| >              | h1    | 6.60   | initial height of water above base of hole (m) |
| 5              | h2    | 6.32   | final height of water above base of hole (m)   |
| Σ              | t     | 4.0    | time of test (h)                               |
|                |       |        |                                                |



$$k_s = 1.3E-07$$
 cm/sec




Modified Falling Head Permeability Equation

$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[ \frac{\sinh^{-1}\frac{\ell}{r_{e}}}{2} \ln \left[ \frac{2H_{1} - \ell}{2H_{2} - \ell} \right] - \ln \left[ \frac{2H_{1}H_{2} - \ell H_{2}}{2H_{1}H_{2} - \ell H_{1}} \right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

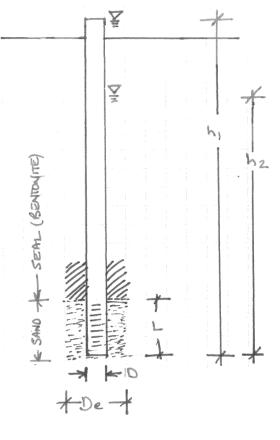
#### VF11-23 - VanHuigenbos Farms

| NPUT VARIABLES | Terms<br>D<br>De | 0.0520 | Definition diameter of standpipe (m) diameter of borehole (m) |
|----------------|------------------|--------|---------------------------------------------------------------|
| SIAB           | De               |        | ' ' ' '                                                       |
| Ą              | L                | 1.60   | length of sand section (m)                                    |
| 2              | h1               | 5.10   | initial height of water above base of hole (m)                |
| 2              | h2               | 4.74   | final height of water above base of hole (m)                  |
| Z              | t                | 4.0    | time of test (h)                                              |



$$k_s = 2.2E-07$$
 cm/sec




Modified Falling Head Permeability Equation

$$K_{s} = \frac{r^{2}}{2\ell\Delta t} \left[ \frac{\sinh^{-1}\frac{\ell}{r_{e}}}{2} \ln \left[ \frac{2H_{1} - \ell}{2H_{2} - \ell} \right] - \ln \left[ \frac{2H_{1}H_{2} - \ell H_{2}}{2H_{1}H_{2} - \ell H_{1}} \right] \right]$$

taken from USBR Engineering Geology Field Manual Volume 2 (2001)

#### VF14-23 - VanHuigenbos Farms

| ဟ         | Т     | \/alua | Definition                                     |
|-----------|-------|--------|------------------------------------------------|
| Щ         | Terms | Value  | Definition                                     |
| ᆸ         | D     | 0.0520 | diameter of standpipe (m)                      |
| ₹         | De    | 0.1500 | diameter of borehole (m)                       |
| VARIABLES | L     | 1.55   | length of sand section (m)                     |
| 2         | h1    | 5.10   | initial height of water above base of hole (m) |
| NPUT      | h2    | 4.70   | final height of water above base of hole (m)   |
| Ę         | t     | 4.0    | time of test (h)                               |
| _         |       |        |                                                |



$$k_s = 2.5E-07$$
 cm/sec

## **CHILAKO DRILLING SERVICES LTD**

Box 942 Coaldale, Alberta, T1M 1M8 (403) 345-3710

### **SOIL PROFILE AND PARENT MATERIAL DESCRIPTION**

Site Location: SE21-9-26W4, Vanhuigenbos Farms Date: 1-May-23

| Hole #  | Location           | Depth    |          |          | Geological     | Sample  | Remarks                                        |
|---------|--------------------|----------|----------|----------|----------------|---------|------------------------------------------------|
| VF1-23  |                    | 0-0.15   |          |          |                | Sample  | Remarks                                        |
| VF1-23  | 0322880<br>5513240 | 0.15-1.2 | LS<br>LS | M<br>M   | Topsoil<br>Lac |         | Loose                                          |
|         | 3313240            | 1.2-1.3  | LS       | Sat      | Lac            |         | Sat @ clay contact, free water                 |
|         |                    | 1.3-3.0  | SiC      | M-VM     | Lac            |         | Stiff, med-high plastic, olive brown           |
|         |                    | 1.3-3.0  | SIC      | IVI-VIVI | Lac            |         | Sluff @ 1.2m                                   |
|         |                    |          |          |          |                |         | Sidif & 1.2111                                 |
| VF2-23  | 0322883            | 0-0.15   | LS       | М        | Topsoil        |         |                                                |
| VI Z Z3 | 5513133            | 0.15-1.2 | LS       | M        | Lac            |         | Loose                                          |
|         | 3313133            | 1.2-1.5  | LS       | Sat      | Lac            |         | Loose, free water                              |
|         |                    | 1.5-3.0  | SiC      | M-VM     | Lac            |         | Stiff, med-high plastic, olive brown           |
|         |                    | 1.0 0.0  | 0.0      | 101 0101 | Lao            |         | Sluff @ 1.2m                                   |
|         |                    |          |          |          |                |         | Oldif @ 1.2111                                 |
| VF3-23  | 0322809            | 0-0.15   | LS       | М        | Topsoil        |         |                                                |
| 1. 0 20 | 5513139            | 0.15-1.2 |          | М        | Lac            |         | Loose                                          |
|         |                    | 1.2-1.6  | LS       | Sat      | Lac            |         | Free water                                     |
|         |                    | 1.6-3.0  | SiC      | М        | Lac            |         | Stiff, med-high plastic, olive brown           |
|         |                    |          | CL-SiCL  | M-VM     | Till           |         | Stiff, med plastic, brown                      |
|         |                    |          |          |          |                |         | Sluff @ 1.2m                                   |
|         |                    |          |          |          |                |         |                                                |
| VF4-23  | 0322801            | 0-0.15   | LS       | М        | Topsoil        |         |                                                |
|         | 5513264            | 0.15-1.2 | LS       | М        | Lac            |         | Loose                                          |
|         |                    | 1.2-1.3  | LS       | Sat      | Lac            |         | Loose                                          |
|         |                    | 1.3-3.0  | SiC      | M-VM     | Lac            | 1.5-3.0 | Stiff, high plastic, olive brown               |
|         |                    |          |          |          |                |         |                                                |
| VF5-23  | 0322702            | 0-0.15   | LS       | М        | Topsoil        |         |                                                |
|         | 5513260            | 0.15-1.1 | LS       | М        | Lac            | 0.5-1.0 | Loose                                          |
|         |                    | 1.1-1.2  | LS       | Sat      | Lac            |         |                                                |
|         |                    | 1.2-3.7  | SiC      | M-VM     | Lac            | 2.0-3.7 | , ,                                            |
|         |                    | 3.7-4.5  | SiCL     | M-VM     | Lac            |         | V.firm, med plastic, olive brown, sand streaks |
|         |                    |          |          |          |                |         | 50mm H.C. Well installed to 4.5m bgs           |
|         |                    |          |          |          |                |         | Screen: 4.5-3.0m                               |
|         |                    |          |          |          |                |         | Sand: 4.5-2.7m                                 |
|         |                    |          |          |          |                |         | Bentonite: 2.7-0.0m                            |
|         |                    |          |          |          |                |         | Stickup: 0.6m                                  |
|         |                    |          |          |          |                |         | Hole Diameter: 0.15m                           |
| \/E0.00 | 0000000            | 0.045    |          |          | T              |         |                                                |
| VF6-23  | 0322696            | 0-0.15   | LS       | M        | Topsoil        |         |                                                |
|         | 5513117            | 0.15-1.4 |          | M        | Lac            |         | Loose                                          |
|         |                    | 1.4-1.5  | LS       | Sat      | Lac            |         | Loose                                          |
|         |                    | 1.5-3.0  | SiC      | M-VM     | Lac            |         | V.firm, med-high plastic, olive brown          |
|         |                    |          |          |          |                |         |                                                |

## SOIL PROFILE AND PARENT MATERIAL DESCRIPTION (CONTINUED)

| Hole #  | Location           | Depth                                                                     | Texture                                   | Moisture                         | Geological                                         | Sample  | Remarks                                                                                                                                                                                                                                                         |
|---------|--------------------|---------------------------------------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VF7-23  | 0322625            | 0-0.15                                                                    | LS                                        | M                                | Topsoil                                            |         |                                                                                                                                                                                                                                                                 |
|         | 5513160            | 0.15-0.6<br>0.6-1.1<br>1.1-2.0<br>2.0-4.6<br>4.6-5.8<br>5.8-9.0           | LS+Gr<br>LS<br>LS<br>SiC<br>CL-C<br>CL    | M<br>M<br>Sat<br>M-VM<br>M       | Lac<br>Lac<br>Lac<br>Lac<br>Till<br>Till           |         | Loose Free water V.firm, high plastic, olive brown Stiff, med plastic, dark brown Stiff, med plastic, grey, trace gravel, sat. lenses, sluff and free water @ 1.2m                                                                                              |
| VF8-23  | 0322627<br>5513223 | 0-0.15<br>0.15-1.1<br>1.1-1.5<br>1.5-2.3<br>2.3-4.7<br>4.7-9.2            | LS<br>LS<br>C.S+Gr<br>SiC<br>SiCL<br>C    | M<br>M<br>Sat<br>M-VM<br>M-VM    | Topsoil<br>Lac<br>Lac<br>Lac<br>Lac<br>Lac<br>Till | 4.7-6.2 | Free water V.firm, high plastic, olive brown V.firm, high plastic, olive brown Stiff, med-high plastic, dark brown, trace gravel Sluff and Free water @ 1.1m                                                                                                    |
| VF9-23  | 0322617<br>5513296 | 0-0.9<br>0.9-1.0<br>1.0-4.3<br>4.3-9.2                                    | LS<br>LS<br>SiC<br>C                      | M<br>Sat<br>VM<br>M              | Lac<br>Lac<br>Lac<br>Till                          |         | Loose<br>Firm, high plastic, olive brown<br>Stiff, med plastic, brown<br>Sluff and free water @ 0.9m                                                                                                                                                            |
| VF10-23 | 0322641<br>5513263 | 0-0.15<br>0.15-1.0<br>1.0-1.2<br>1.2-1.9<br>1.9-3.7<br>3.7-5.5<br>5.5-6.0 | LFS<br>LFS<br>LM.S<br>SIC<br>CL-C<br>CL-C | M<br>M<br>Sat<br>VM<br>M         | Lac<br>Lac<br>Lac<br>Lac<br>Till<br>Till           | 4.5-5.5 | Free water @ 1.2m V. Firm, med plastic, olive brown Stiff, med plastic, brown Stiff, med plastic, gray 50mm H.C. Well installed to 6.0m BGS Screen: 6.0-4.5m Sand: 6.0-4.4m Bentonite: 4.4-3.2m Stickup: 0.6m Hole Diameter: 0.15m                              |
| VF11-23 | 0322843<br>5513160 | 0-0.15<br>0.15-1.5<br>1.5-2.0<br>2.0-3.1<br>3.1-4.0<br>4.0-4.5            | LFS<br>LFS<br>SIC<br>SICL<br>CL-C         | M<br>M<br>Sat<br>M<br>VM<br>M-VM | Lac<br>Lac<br>Lac<br>Lac<br>Till                   |         | Free water @ 1.5m Stiff, med plastic, olive brown Stiff, med-high plastic, olive brown Stiff, med-high plastic, brown, sand streaks 50mm H.C. Well installed to 4.5m BGS Screen: 4.5-3.0m Sand: 4.5-2.9m Bentonite: 2.9-0.0m Stickup: 0.6m Hole Diameter: 0.15m |

### SOIL PROFILE AND PARENT MATERIAL DESCRIPTION (CONTINUED)

| Hole #             | Location                                 | Depth                                                                                                      | Texture                      | Moisture                           | Geological                                               | Sample  | Remarks                                                                                                                                                                                                                                                                                  |
|--------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------|----------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VF12-23<br>VF13-23 | 0322950<br>5513151<br>0322912<br>5512994 | 0-0.15<br>0.15-1.0<br>1.0-1.3<br>1.3-1.5<br>1.5-4.5<br>0-0.15<br>0.15-0.7<br>0.7-1.5<br>1.5-3.4<br>3.4-3.5 | LFS<br>LFS<br>SICL-SIC<br>LS | M<br>M<br>VM<br>Sat<br>M<br>M<br>M | Lac Lac Lac Lac Lac Lac Lac Topsoil Lac Lac Lac Tac Till | 3.0-4.5 | Free water @ 1.3m Stiff, med plastic, olive brown  V. Firm, med plastic, olive brown                                                                                                                                                                                                     |
| VF14-23            | 0322816<br>5512971                       | 3.4-3.5<br>3.5-4.5<br>0-0.15<br>0.15-0.8<br>0.8-1.2<br>1.2-2.8<br>2.8-4.5                                  | CL-C<br>FLS                  | M<br>M<br>M<br>M                   | Till Topsoil Lac Lac Lac Till                            | 3.5-4.5 | V. Firm, med plastic, olive brown Stiff, med plastic, olive brown  Soft, VM, silt lenses Stiff, med plastic, brown Stiff, med plastic, brown, sand streaks 50mm H.C. Well installed to 4.5m BGS Screen: 4.5-3.0m Sand: 4.5-2.95m Bentonite: 2.95-0.0m Stickup: 0.6m Hole Diameter: 0.15m |
| VF15-23            | 0322707<br>5512972                       | 0-0.15<br>0.15-1.0<br>1.0-2.6<br>2.6-3.0                                                                   | FLS<br>FLS<br>SiCL<br>CL     | M<br>M<br>M                        | Topsoil<br>Lac<br>Lac<br>Till                            | 2.6-3.0 | Soft, med plastic, silty layers<br>Stiff, med plastic, brown, sand streaks                                                                                                                                                                                                               |

Legend: L Loam

C Clay
S Sand
Gr. Gravel
Si Silt

F Fine (sand) VF Very Fine (sand)

Eg. VFSCL = Very Fine Sandy Clay Loam